Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668917

RESUMEN

Polysaccharide-degrading bacteria are key participants in the global carbon cycle and algal biomass recycling. Herein, a polysaccharide lyase-producing strain HB226069 was isolated from Sargassum sp. from Qingge Port, Hainan, China. Results of the phylogenetic of the 16S rRNA gene and genotypic analysis indicated that the isolate should be classified as Microbulbifer thermotolerans. The whole genome is a 4,021,337 bp circular chromosome with a G+C content of 56.5%. Analysis of the predicted genes indicated that strain HB226069 encoded 161 carbohydrate-active enzymes (CAZymes), and abundant putative enzymes involved in polysaccharide degradation were predicted, including alginate lyase, fucosidase, agarase, xylanase, cellulase, pectate lyase, amylase, and chitinase. Three of the putative polysaccharide lyases from PL7 and PL17 families were involved in alginate degradation. The alginate lyases of strain HB226069 showed the maximum activity of 117.4 U/mL at 50 °C, pH 7.0, and 0.05 M FeCl3, while exhibiting the best stability at 30 °C and pH 7.0. The Thin Layer Chromatography (TLC) and Electrospray Ionization Mass Spectrometry (ESI-MS) analyses indicated that the alginate oligosaccharides (AOSs) degraded by the partially purified alginate lyases contained oligosaccharides of DP2-DP5 and monosaccharide while reacting for 36 h. The complete genome of M. thermotolerans HB226069 enriches our understanding of the mechanism of polysaccharide lyase production and supports its potential application in polysaccharide degradation.

2.
Microorganisms ; 11(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37110252

RESUMEN

Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.

3.
Fish Shellfish Immunol ; 126: 318-326, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35654386

RESUMEN

YccA is a hydrophobic protein with seven transmembrane domains. The function of YccA is largely unknown in pathogenic bacteria. Edwardsiella piscicide (formerly known as E. tarda) is an aquatic pathogen that can infect various economically important fish, including flounder (Paralichthys olivaceus) and tilapia (Oreochromis niloticus). In this study, we investigated the role of YccA in E. piscicida by the construction of a mar kerless yccA in-frame mutant strain, TX01ΔyccA. We found that (i) in comparison to the wild type TX01, TX01ΔyccA exhibited markedly compromised tolerance to high temperature and tobramycin; (ii) deletion of yccA significantly impaired the integrity of the cell membrane and retarded bacterial biofilm formation and mobility; (iii) deficiency of yccA reduced bacterial adhesion and invasion of fish cells and immune tissues, while the introduction of a trans-expressed yccA gene restored the lost virulence of TX01ΔyccA; and (iv) host immune responses induced by TX01 and TX01ΔyccA were different in terms of reactive oxygen species (ROS) levels and expression levels of cytokines. Taken together, the results of our study indicate that YccA is a novel virulence factor of E. piscicida, and YccA is essential for bacterial pathogenicity through evasion of the host's innate immune functions.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Lenguado , Animales , Proteínas Bacterianas/genética , Edwardsiella/fisiología , Edwardsiella tarda , Lenguado/metabolismo , Inmunidad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
Vet Res ; 52(1): 117, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521475

RESUMEN

Edwardsiella tarda is a facultative intracellular pathogen in humans and animals. The Gram-negative bacterium is widely considered a potentially important bacterial pathogen. Adaptation to acid stress is important for the transmission of intestinal microbes, so the acid-resistance (AR) system is essential. However, the AR systems of E. tarda are totally unknown. In this study, a lysine-dependent acid resistance (LDAR) system in E. tarda, CadBA, was characterized and identified. CadB is a membrane protein and shares high homology with the lysine/cadaverine antiporter. CadA contains a PLP-binding core domain and a pyridoxal phosphate-binding motif. It shares high homology with lysine decarboxylase. cadB and cadA are co-transcribed under one operon. To study the function of the cadBA operon, isogenic cadA, cadB and cadBA deletion mutant strains TX01ΔcadA, TX01ΔcadB and TX01ΔcadBA were constructed. When cultured under normal conditions, the wild type strain and three mutants exhibited the same growth performance. However, when cultured under acid conditions, the growth of three mutants, especially TX01ΔcadA, were obviously retarded, compared to the wild strain TX01, which indicates the important involvement of the cadBA operon in acid resistance. The deletion of cadB or cadA, especially cadBA, significantly attenuated bacterial activity of lysine decarboxylase, suggesting the vital participation of cadBA operon in lysine metabolism, which is closely related to acid resistance. The mutations of cadBA operon enhanced bacterial biofilm formation, especially under acid conditions. The deletions of the cadBA operon reduced bacterial adhesion and invasion to Hela cells. Consistently, the deficiency of cadBA operon abated bacterial survival and replication in macrophages, and decreased bacterial dissemination in fish tissues. Our results also show that the expression of cadBA operon and regulator cadC were up-regulated upon acid stress, and CadC rigorously regulated the expression of cadBA operon, especially under acid conditions. These findings demonstrate that the AR CadBA system was a requisite for the resistance of E. tarda against acid stress, and played a critical role in bacterial infection of host cells and in host tissues. This is the first study about the acid resistance system of E. tarda and provides new insights into the acid-resistance mechanism and pathogenesis of E. tarda.


Asunto(s)
Biopelículas , Edwardsiella tarda/fisiología , Edwardsiella tarda/patogenicidad , Factores de Virulencia/genética , Ácidos/metabolismo , Edwardsiella tarda/genética
5.
Dev Comp Immunol ; 122: 104104, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891970

RESUMEN

The Lymphocyte antigen-6 (Ly-6) superfamily has been considered to play an important role in the innate immunity of mammals. The functions of Ly-6 proteins are diverse since their low sequence homology. Currently, the function of Ly-6D, a member of Ly-6 family proteins, is completely unknown in teleost. In the present study, we identified and characterized a Ly-6D homologue (named PoLy-6D) from the teleost fish Paralichthys olivaceus and examined its immune function. PoLy-6D possesses a hydrophobic signal peptide, a LU domain including a conserved "LXCXXC" motif in N-terminus and a "CCXXXXCN" motif in C-terminus. Under normal physiological condition, PoLy-6D expression distributes in all the examined tissues, the highest three tissues are successively spleen, head kidney, and blood. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, PoLy-6D expression was induced and the patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoLy-6D (rPoLy-6D) inhibited the lysis of rabbit red blood cells by serum and selectively improved bacterial survival in serum. After serum were treated by antibody of rPoLy-6D, bacteriostatic effect of serum was obviously enhanced. These results indicate the importance of PoLy-6D as a complement regulator. rPoLy-6D possessed the binding activity to multiple bacteria but did not exhibit antimicrobial activities. The interaction between rPoLy-6D and bacteria suggests that PoLy-6D is involved in host clearance of pathogens probably by serving as a receptor for pathogens. Overexpression of PoLy-6D in vivo promoted the host defense against invading E. piscicida. These findings add new insights into the regulation mechanism of the complement system in teleost and emphasize the importance of Ly-6D products for the control of pathogen infection.


Asunto(s)
Antígenos Ly/inmunología , Activación de Complemento/inmunología , Proteínas Inactivadoras de Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Lenguado/inmunología , Secuencia de Aminoácidos , Animales , Antígenos Ly/genética , Secuencia de Bases , Edwardsiella/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/inmunología , Factores Inmunológicos/inmunología , Dominios Proteicos , Alineación de Secuencia , Análisis de Secuencia de ADN , Virus/inmunología
6.
Front Microbiol ; 12: 646299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732226

RESUMEN

The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.

7.
Dev Comp Immunol ; 119: 104037, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33545212

RESUMEN

Bacillus subtilis subsp. subtilis G7 was isolated from a deep-sea hydrothermal vent and is pathogenic to pathogenic to fish (Japanese flounder) and mice. G7 is able to survive in host sera and phagocytes. In this study, we investigated the underlying mechanism of G7 serum resistance. We found that (i) the remaining complement activity was very low in G7-incubated flounder serum but high in G7-incubated mouse serum; (ii) cleaved C3 and C5 components were detected on flounder serum-incubated G7 but not on mouse serum-incubated G7; (iii) abundant uncleaved C5 was localized in G7-incubated mouse, but not flounder, serum; (iv) G7-incubated flounder, but not mouse, serum exhibited strong chemotactic activity; (v) pre-treatment with low-dose lysozyme abolished the serum resistance of G7. Hence, G7 activates flounder complement but is protected from complement-mediated destruction by its cell wall structure, while G7 prevents the activation of mouse complement. These results indicate that G7 employs different mechanisms to avoid the complement killing of different hosts.


Asunto(s)
Infecciones por Bacillaceae/inmunología , Bacillus subtilis/inmunología , Proteínas del Sistema Complemento/inmunología , Enfermedades de los Peces/inmunología , Lenguado/inmunología , Evasión Inmune/inmunología , Animales , Infecciones por Bacillaceae/sangre , Infecciones por Bacillaceae/microbiología , Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/patogenicidad , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Enfermedades de los Peces/microbiología , Lenguado/sangre , Lenguado/microbiología , Interacciones Huésped-Patógeno/inmunología , Respiraderos Hidrotermales/microbiología , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Virulencia/inmunología
8.
Vet Res ; 52(1): 28, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597018

RESUMEN

CD9 is a glycoprotein of the transmembrane 4 superfamily that is involved in various cellular processes. Studies related to the immune functions and activities of CD9 in teleost fish are limited. In this study, we characterized two CD9 homologs, PoCD9.1 and PoCD9.3, from Japanese flounder (Paralichthys olivaceus). Sequence analysis showed that PoCD9.1 and PoCD9.3 possess characteristic transmembrane 4 superfamily (TM4SF) structures. PoCD9.1 shares 70.61% sequence identity with PoCD9.3. The expression of PoCD9.1 and PoCD9.3 in the three main immune tissues was significantly induced in a time-dependent manner by extracellular and intracellular pathogen infection, which indicates that the two CD9 homologs play an important role in the response to pathogenic infection. Following infection with the extracellular pathogen Vibrio anguillarum, the expression profiles of both PoCD9.1 and PoCD9.3 were similar. After infection with the intracellular pathogen Edwardsiella piscicida, the expression levels of PoCD9.1 and PoCD9.3 were different at different stages of infection, especially in the spleen. The spleen was the most important tissue for the PoCD9.1 and PoCD9.3 responses to pathogen infection among the three examined immune tissues. Knockdown of PoCD9.1 and PoCD9.3 attenuated the ability of host cells to eliminate pathogenic bacteria, and PoCD9.1 knockdown was more lethal than PoCD9.3 knockdown for host cells with E. piscicida infection. Overexpression of PoCD9.1 and PoCD9.3 promoted host or host cell defence against E. piscicida infection. These findings suggest that PoCD9.1 and PoCD9.3 serve as immune-related factors, play an important role in the immune defence system of Japanese flounder, and display different functions in response to different pathogens at different stages of infection.


Asunto(s)
Lenguado/genética , Lenguado/inmunología , Regulación de la Expresión Génica/inmunología , Tetraspanina 29/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Edwardsiella , Escherichia coli , Branquias/citología , Riñón Cefálico/metabolismo , Iridoviridae , Hígado/metabolismo , Modelos Moleculares , Conformación Proteica , Bazo/metabolismo , Tetraspanina 29/metabolismo , Transcriptoma , Vibrio
9.
Dev Comp Immunol ; 116: 103920, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33189746

RESUMEN

Macrophage colony-stimulating factor (MCSF) is an essential growth factor to control the proliferation, differentiation and survival of the macrophage lineage in vertebrates. Sequences of MCSF have been identified in multiple teleost species, however, the functional investigations of MCSF were documented in only a few species. In this study, we examined the biological activity and the immunomodulatory property of a MCSF homologue, PoMCSF, from Japanese flounder (Paralichthys olivaceus). Structural analysis showed that PoMCSF possesses conserved structural characteristics of MCSF proteins, including a signal peptide, a CSF-1 domain, and a transmembrane region closed to the C-terminal. Under normal physiological condition, PoMCSF expression distributes in all the examined tissues, the highest three tissues are blood, muscle, and head kidney. When infected by extracellular and intracellular bacterial pathogens and viral pathogen, the PoMCSF expression patterns vary with different types of microbial pathogens infection and different immune tissues. In vitro experiment showed recombinant PoMCSF promoted the activity of macrophage. In vivo experiment indicated that PoMCSF overexpression boosted the defensive ability of flounder against Edwardsiella piscicida, a severe fish pathogen that infects multiple species of economically important fish, and regulated the expression of multiple immune-related genes. To explore the relationship between PoMCSF and its receptor PoMCSFR, anti-PoMCSFR antibody was prepared and PoMCSFR knockdown was conducted. The neutralization assay showed that when PoMCSFR was neutralized by its antibody, the role of PoMCSF on host defense against E. piscicida was weakened. Knockdown of PoMCSFR impaired the phagocytic capacity of macrophages. Collectively, these findings suggest that PoMCSF plays a crucial role in the immune defense system of Japanese flounder and the effect of PoMCSF is dependent on PoMCSFR. This study provides new insights into the biological activity of MCSF and the relationship between MCSF and MCSFR in teleost.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Proteínas de Peces/inmunología , Peces Planos/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Secuencia de Aminoácidos , Animales , Citocinas/genética , Edwardsiella tarda/patogenicidad , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Riñón Cefálico/inmunología , Factor Estimulante de Colonias de Macrófagos/genética , Macrófagos/inmunología , Fagocitosis , Receptor de Factor Estimulante de Colonias de Macrófagos/genética
10.
Int J Syst Evol Microbiol ; 70(9): 5087-5092, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32790602

RESUMEN

A Gram-stain-variable, facultatively anaerobic, endospore-forming, rod-shaped bacterium, designated HB172198T, was isolated from brown alga collected at Qishui Bay, Hainan, PR China. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain HB172198T belonged to the genus Paenibacillus, and the closest phylogenetically related species was Paenibacillus lemnae NBRC 109972T (97.6% similarity). The other 16S rRNA gene sequence similarities were under 97.0%. The whole genome average nucleotide identity value between strain HB172198T and the closest type strain was 75.3% and the in silico DNA-DNA hybridization value was 20.2%. The predominant isoprenoid quinone was menaquinone 7 and the major fatty acids were anteiso-C15:0, C16:0, anteiso-C17:0, iso C16:0 and C16:1 ω11c. The combined phylogenetic relatedness, phenotypic and genotypic features supported the conclusion that strain HB172198T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus algicola sp. nov. is proposed. The type strain is HB172198T (=CGMCC 1.13583T=JCM 32683T).


Asunto(s)
Paenibacillus/clasificación , Phaeophyceae/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Paenibacillus/enzimología , Paenibacillus/aislamiento & purificación , Polisacárido Liasas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Fish Shellfish Immunol ; 98: 499-507, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32001355

RESUMEN

Cathepsin K belongs to the family of cysteine cathepsins. It is well known that the cysteine cathepsins participate in various physiological processes and host immune defense in mammals. However, in teleost fish, the function of cathepsin K is very limited. In the present study, a cathepsin K homologue (SsCTSK) from the teleost black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. In silico analysis showed that three domains, including signal peptide, cathepsin propeptide inhibitor I29 domain, and functional domain Pept_C1, are existed in SsCTSK. SsCTSK also possesses a peptidase domain with three catalytically essential residues (Cys25, His162 and Asn183). Phylogenetic profiling indicated that SsCTSK was evolutionally close to the cathepsin K of other teleost fish. Expression of SsCTSK occurred in multiple tissues and was induced by bacterial infection. Purified recombinant SsCTSK (rSsCTSK) exhibited apparent maximal peptidase activity at 45 °C, and its enzymatic activity was remarkably declined in the presence of the cathepsin inhibitor E-64. Moreover, rSsCTSK possesses the ability to bind with PAMPs and bacteria. Finally, knockdown of SsCTSK expression facilitated bacterial invasion in black rockfish. Collectively, these results indicated that SsCTSK functions as a cysteine protease and may serves as a target for pathogen manipulation of host defense system.


Asunto(s)
Catepsina K/química , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/inmunología , Perciformes , Vibriosis/veterinaria , Vibrio , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/genética , Filogenia , Vibriosis/inmunología , Vibriosis/microbiología
12.
Fish Shellfish Immunol ; 96: 235-244, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31786345

RESUMEN

Histone proteins are not only structurally important for chromosomal DNA packaging but also involved in the regulation of gene expression and the immune response of host against pathogens. Japanese flounder (Paralichthys olivaceus) as one of the most important marine flatfish, suffered from widespread outbreaks of diseases, and its immunological functioning remained to be elucidated. In the present study, we reported the expression patterns of four histones (H1, H2A, H3, and H3.3) and functional characterization of the histone H3.3 from flounder. Quantitative real time RT-PCR (RT-qPCR) analysis showed that expression of the four histones occurred in multiple tissues, but their levels of expression were relatively high in immune organs, and inducible in response to pathogens infection. Infection with extracellular and intracellular bacterial pathogens and viral pathogen regulated the expression of histones in a manner that depended on tissue type, pathogen, and infection stage. Specifically, H1 expression was highly induced by intracellular viral pathogens; H2AX and H3 expressions were highly induced by intracellular bacterial pathogen; dissimilarly, H3.3 expression was slightly induced by extracellular bacterial pathogen, but was inhibited by intracellular bacterial and viral pathogens. To further investigate H3.3 function, recombinant H3.3 (rH3.3) was obtained, and in vitro experiments showed rH3.3 possessed the capability of binding to both Gram-negative and Gram-positive bacteria and inhibiting the growth of some target bacteria. Consistently, In vivo results showed that overexpression of H3.3 promoted the host defense against invading pathogenic microorganism and regulated the expressions of several cytokines. These results suggested that flounder histones exhibit different expression patterns in response to the infection of different microbial pathogens, and H3.3 serves as an immune-related protein and plays an important role in antimicrobial immunity of Japanese flounder. Taken together, this study is the first report about the expression profile of different histones upon different kind of pathogens and anti-infectious immunity of H3.3 in teleost, which offered new insights into the immunological function of histones in teleost.


Asunto(s)
Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Histonas/genética , Histonas/inmunología , Inmunidad Innata/genética , Animales , Citocinas/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Bacterias Grampositivas/fisiología , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/veterinaria
13.
Artículo en Inglés | MEDLINE | ID: mdl-31750261

RESUMEN

The Bacillus cereus group is frequently isolated from soil, plants, food, and other environments. In this study, we report the first isolation and characterization of a B. cereus group member, Bacillus wiedmannii SR52, from the hydrothermal field in the Iheya Ridge of Okinawa Trough. SR52 was isolated from the gills of shrimp Alvinocaris longirostris, an invertebrate species found abundantly in the ecosystems of the hydrothermal vents, and is most closely related to B. wiedmannii FSL W8-0169. SR52 is aerobic, motile, and able to form endospores. SR52 can grow in NaCl concentrations up to 9%. SR52 has a circular chromosome of 5,448,361 bp and a plasmid of 137,592 bp, encoding 5,709 and 189 genes, respectively. The chromosome contains 297 putative virulence genes, including those encoding enterotoxins and hemolysins. Fourteen rRNA operons, 107 tRNAs, and 5 sRNAs are present in the chromosome, and 7 tRNAs are present in the plasmid. SR52 possesses 13 genomic islands (GIs), all on the chromosome. Comparing to FSL W8-0169, SR52 exhibits several streaking features in its genome, notably an exceedingly large number of non-coding RNAs and GIs. In vivo studies showed that following intramuscular injection into fish, SR52 was able to disseminate in tissues and cause mortality; when inoculated into mice, SR52 induced acute mortality and disseminated transiently in tissues. In vitro studies showed that SR52 possessed hemolytic activity, and the extracellular product of SR52 exhibited a strong cytotoxic effect. These results provided the first insight into the cytotoxicity and genomic feature of B. wiedmannii from the deep-sea hydrothermal environment.


Asunto(s)
Bacillus/genética , Genoma Bacteriano , Genómica , Respiraderos Hidrotermales/microbiología , Animales , Bacillus/aislamiento & purificación , Microbiología Ambiental , Femenino , Peces/microbiología , Genómica/métodos , Japón , Ratones , Filogenia , ARN Ribosómico 16S/genética , Virulencia/genética , Secuenciación Completa del Genoma
14.
J Immunol ; 203(5): 1369-1382, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391231

RESUMEN

Pyroptosis is a newly defined gasdermin (GSDM)-dependent inflammatory type of programmed cell death. Different from mammals, which have a panel of pyroptotic GSDM members (e.g., GSDMA-E), teleosts possess only GSDME. The pyroptotic activity and regulation mechanism of teleost GSDME remain to be elucidated. In this work, we investigated the activity of the teleost Cynoglossus semilaevis (tongue sole) GSDME (CsGSDME) in association with different caspases (CASPs). We found that CsGSDME exerted pyroptotic and bactericidal activities through its N-terminal domain. Unlike human GSDME, which is exclusively cleaved by CASP3, CsGSDME was cleaved by C. semilaevis CASP (CsCASP) 1 with high efficiency and by CsCASP3 and 7 with comparatively low efficiencies, and all cleavages occurred at the 243FEVD246 site in the interdomain linker region of CsGSDME. Mutation of Phe243 to Asp/Ala and Asp246 to Ala in 243FEVD246 altered the cleavage preference of CsCASP1, 3, and 7. Treatment with loss-of-function CsCASP mutants or inhibition of CsCASP activity resulted in failure of CsGSDME cleavage. CsCASP1-cleaved CsGSDME induced pyroptosis, whereas CsCASP3/7-cleaved CsGSDME and F243 mutants induced switching of cell death from apoptosis to pyroptosis. Analysis of 54 teleost GSDME sequences revealed a conserved tetrapeptide motif that fits well to the inherent cleavage site of CASP1. Taken together, the results of our study demonstrate a hitherto, to our knowledge, unrecognized GSDME cleavage mode in teleosts that is clearly different from that in mammals, thus providing an important insight into the activation mechanism of CASP-mediated, GSDM-executed pyroptosis in teleosts.


Asunto(s)
Caspasas/metabolismo , Peces Planos/metabolismo , Piroptosis/fisiología , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-31214515

RESUMEN

Bacillus subtilis is the best studied Gram-positive bacterium, primarily as a model of cell differentiation and industrial exploitation. To date, little is known about the virulence of B. subtilis. In this study, we examined the virulence potential of a B. subtilis strain (G7) isolated from the Iheya North hydrothermal field of Okinawa Trough. G7 is aerobic, motile, endospore-forming, and requires NaCl for growth. The genome of G7 is composed of one circular chromosome of 4,216,133 base pairs with an average GC content of 43.72%. G7 contains 4,416 coding genes, 27.5% of which could not be annotated, and the remaining 72.5% were annotated with known or predicted functions in 25 different COG categories. Ten sets of 23S, 5S, and 16S ribosomal RNA operons, 86 tRNA and 14 sRNA genes, 50 tandem repeats, 41 mini-satellites, one microsatellite, and 42 transposons were identified in G7. Comparing to the genome of the B. subtilis wild type strain NCIB 3610T, G7 genome contains many genomic translocations, inversions, and insertions, and twice the amount of genomic Islands (GIs), with 42.5% of GI genes encoding hypothetical proteins. G7 possesses abundant putative virulence genes associated with adhesion, invasion, dissemination, anti-phagocytosis, and intracellular survival. Experimental studies showed that G7 was able to cause mortality in fish and mice following intramuscular/intraperitoneal injection, resist the killing effect of serum complement, and replicate in mouse macrophages and fish peripheral blood leukocytes. Taken together, our study indicates that G7 is a B. subtilis isolate with unique genetic features and can be lethal to vertebrate animals once being introduced into the animals by artificial means. These results provide the first insight into the potential harmfulness of deep-sea B. subtilis.


Asunto(s)
Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/patogenicidad , Respiraderos Hidrotermales/microbiología , Agua de Mar/microbiología , Microbiología del Agua , Animales , Bacillus subtilis/clasificación , Bacillus subtilis/genética , Composición de Base , Línea Celular , ADN Bacteriano , Modelos Animales de Enfermedad , Femenino , Peces , Genoma Bacteriano , Ratones , Ratones Endogámicos BALB C , Océano Pacífico , Filogenia , Células RAW 264.7 , ARN Ribosómico 16S/genética , Análisis de Secuencia , Cloruro de Sodio , Temperatura , Virulencia/genética , Factores de Virulencia/genética
16.
Dev Comp Immunol ; 84: 382-395, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572135

RESUMEN

Anti-lipopolysaccharide factor (ALF) is a type of antimicrobial peptides (AMPs) with a vital role in antimicrobial defense. Although a large amount of ALFs have been identified from neritic and fresh water crustacean species, no functional investigation of ALFs from deep-sea animals have been documented. In the present study, we characterized the immune function of an ALF molecule (named RspALF1) from the shrimp Rimicaris sp. residing in the deep-sea hydrothermal vent in Desmos, Manus Basin. RspALF1 shares 51.5%-62.4% overall sequence identities with known shrimp ALFs and contains the conserved LPS binding domain (LBD). Both recombinant RspALF1 (rRspALF1) and the LBD-derived peptide (ALF1P1) bound to the cell wall components of Gram-negative and Gram-positive bacteria and killed a wide range of bacteria, especially those from deep-sea hydrothermal field, by damaging bacterial cellular structures. The bactericidal activities of rRspALF1 and ALF1P1 were optimal and stably maintained from 4 °C to 37 °C, which is comparable to the ambient temperature range of the habitat of Rimicaris sp. In addition to bacteria, rRspALF1 and ALF1P1 also exhibited anti-fungal activity. rRspALF1 and ALF1P1 exhibited high killing efficiencies, which, in terms of MIC values, were ranged between 0.25 µM and 4 µM for bacteria and 4 µM-8 µM for fungi. When introduced in vivo, both rRspALF1 and ALF1P1 effectively inhibited bacterial infection in shrimp and reduced the dissemination of bacterial and viral pathogens in fish. Together, these results provide the first insight into the biological property of deep-sea ALF and indicate that RspALF1 very likely plays a significant role in immune defense by functioning as a highly effective antimicrobial with a broad target range.


Asunto(s)
Antiinfecciosos/metabolismo , Antifúngicos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Micosis/inmunología , Penaeidae/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Artrópodos/genética , Clonación Molecular , Respiraderos Hidrotermales , Inmunidad Innata/genética , Lipopolisacáridos/inmunología , Papúa Nueva Guinea , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...