RESUMEN
Lily (Lilium spp), which belongs to Lilium, is one kind of monocotyledon. As a perennial ornamental plant with extremely high esthetic, edible, and medicinal value, lily has gained much favor due to its mostly showy flowers of various colors and elegant shape. In this research, we studied experimental materials in a sample of 49 individuals including 40 cultivars, nine species of wild lily, and their variants. The collection of 40 cultivars covered all six hybrids in the genus, i.e., Asiatic hybrids, Oriental hybrids, Longiflorum hybrids, LA hybrids, LO hybrids, and OT hybrids. Genetic diversity and inter-relationships were assessed through analysis of phenotypic characteristics, pollen morphology, and ISSR molecular markers. Quantitative characters were selected to analyze phenotypic variation, with results indicating greater variability in petiole length as compared to other characters. Pollen morphological observations suggested that the largest variation coefficient between all hybrids and wild species was the lumina. ISSR makers demonstrated that both cultivars and wild species possess a high level of genetic diversity. Specifically, the genetic diversity of wild lily was higher than cultivars.
Asunto(s)
Lilium/genética , Repeticiones de Microsatélite , Fenotipo , Polen/genética , Polimorfismo Genético , Marcadores Genéticos , Hibridación Genética , Polen/anatomía & histologíaRESUMEN
The cytoskeleton mediates various cellular processes such as differentiation and fusion, including in the filopodia and podosomes. However, apart from cell migration and formation of the sealing zone, little is known regarding the changes and related regulatory mechanisms of the cytoskeleton and additional roles of the filopodia and podosomes during the differentiation and fusion of osteoclasts. The cytomorphology and cytoskeleton of osteoclasts in the differentiation process were evaluated using tartrate-resistant acid phosphatase staining and immunofluorescence staining. Moreover, the expression levels of Rho GTPases and enzymes related to osteoclast differentiation and bone resorption were detected by quantitative reverse transcription-polymerase chain reaction. We detected 3 types of filopodia in osteoclast precursors and only 1 type of filopodia in undifferentiated cells. Mature osteoclasts were completely devoid of filopodia. Interestingly, cell fusion was highly specific, and the fusion initially occurred to the filopodia. Confocal images revealed that F-actin and microtubules significantly differed among fused cells. These results suggest that filopodia and podosomes not only play important roles in cell migration and the formation of sealing zones but also in the pre-fusion selectivity of 2 cells and the movement direction of the cell nucleus and cytoplasm during the fusion process. In addition, cdc42v1, RhoU, and RhoF regulate the formation of 3 types of filopodia during various stages of differentiation, while Rac1, Rac2, and filament A may be associated with cell selectivity during the fusion process.