Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
IUBMB Life ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733508

RESUMEN

The cholesterogenic phenotype, encompassing de novo biosynthesis and accumulation of cholesterol, aids cancer cell proliferation and survival. Previously, the role of cholesteryl ester (CE) transfer protein (CETP) has been implicated in breast cancer aggressiveness, but the molecular basis of this observation is not clearly understood, which this study aims to elucidate. CETP knock-down resulted in a >50% decrease in cell proliferation in both 'estrogen receptor-positive' (ER+; Michigan Cancer Foundation-7 (MCF7) breast cancer cells) and 'triple-negative' breast cancer (TNBC; MDA-MB-231) cell lines. Intriguingly, the abrogation of CETP together with the combination treatment of tamoxifen (5 µM) and acetyl plumbagin (a cholesterol-depleting agent) (5 µM) resulted in twofold to threefold increase in apoptosis in both cell lines. CETP knockdown also showed decreased intracellular CE levels, lipid raft and lipid droplets in both cell lines. In addition, RT2 Profiler PCR array (Qiagen, Germany)-based gene expression analysis revealed an overall downregulation of genes associated in cholesterol biosynthesis, lipid signalling and drug resistance in MCF7 cells post-CETP knock-down. On the contrary, resistance in MDA-MB-231 cells was reduced through increased expression in cholesterol efflux genes and the expression of targetable surface receptors by endocrine therapy. The pilot xenograft mice study substantiated CETP's role as a cancer survival gene as knock-down of CETP stunted the growth of TNBC tumour by 86%. The principal findings of this study potentiate CETP as a driver in breast cancer growth and aggressiveness and thus targeting CETP could limit drug resistance via the reduction in cholesterol accumulation in breast cancer cells, thereby reducing cancer aggressiveness.

2.
Medicine (Baltimore) ; 103(18): e37967, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701309

RESUMEN

Lung cancer is one of the most prevalent cancers globally, with non-small cell lung cancers constituting the majority. These cancers have a high incidence and mortality rate. In recent years, a growing body of research has demonstrated the intricate link between inflammation and cancer, highlighting that inflammation and cancer are inextricably linked and that inflammation plays a pivotal role in cancer development, progression, and prognosis of cancer. The Systemic Immunoinflammatory Index (SII), comprising neutrophil, lymphocyte, and platelet counts, is a more comprehensive indicator of the host's systemic inflammation and immune status than a single inflammatory index. It is widely used in clinical practice due to its cost-effectiveness, simplicity, noninvasiveness, and ease of acquisition. This paper reviews the impact of SII on the development, progression, and prognosis of non-small cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inflamación , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Inflamación/inmunología , Pronóstico , Neutrófilos/inmunología , Recuento de Plaquetas , Progresión de la Enfermedad
3.
J Med Biochem ; 43(2): 209-218, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38699690

RESUMEN

Background: To evaluate the predictive value of sICAM-1 and sP-Selectins in the risk of death in a prospective cohort of adult acute respiratory distress syndrome (ARDS). Methods: Adult ARDS patients were included. Plasma sICAM-1, sP-Selectins, and inflammatory cytokines (TNF-α, IL-1b, IL-6, IL-8, and IL-17A) were detected in ARDS subjects. The correlation between different factors and the potential of sICAM-1 and sP-Selectins as endothelial markers to predict the risk of deathfrom ARDS was analyzed.

4.
Dev Cell ; 59(9): 1146-1158.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38574734

RESUMEN

Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Femenino , Implantación del Embrión/genética , Redes Reguladoras de Genes , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Regiones Promotoras Genéticas/genética , Tretinoina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética
5.
Discov Oncol ; 15(1): 32, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329652

RESUMEN

BACKGROUND: Solitary fibrous tumors (SFT) and meningiomas (MA) have similar clinical and radiographic presentations but require different treatment approaches and have different prognoses. This emphasizes the importance of a correct preoperative diagnosis of SFT versus MA. OBJECTIVE: In this study, investigated the differences in imaging characteristics between SFT and MA to improve the accuracy of preoperative imaging diagnosis of SFT. METHODS: The clinical and imaging data of 26 patients with SFT and 104 patients with MA who were pathologically diagnosed between August 2017 and December 2022, were retrospectively analyzed. The clinical and imaging differences between SFT and MA, as well as between the various pathological grades of SFT, were analyzed. RESULTS: Age, gender, cystic change, flow void phenomenon, yin-yang sign, lobulation, narrow base, tumor/cortex signal ratio (TCSR) > 1.0 in T1-weighted imaging (T1WI), TCSR ≥ 1.1 in T2-weighted imaging (T2WI), peritumoral edema, and absence of dural tail sign varied between SFT and MA. As per the receiver operating characteristic (ROC) curve analysis, TCSR > 1 in T1WI has the maximum diagnostic accuracy for SFT. Cranial or venous sinus invasion had a positive effect on SFT (Grade III, World Health Organization (WHO) grading). CONCLUSION: Among the many radiological and clinical distinctions between SFT and MA, TCSR ≥ 1 exhibits the highest predictive efficacy for SFT; while cranial or venous sinus invasion may be a predictor of WHO grade III SFT.

6.
Altern Ther Health Med ; 30(1): 472-480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820679

RESUMEN

Objective: Acupuncture with low-frequency electrical stimulation (Acu-LFES) can attenuate muscle atrophy. Previous studies have found that Acu-LFES reduces the let-7 family in serum exosomes. This study explored the effects of let-7c-5p in chronic kidney disease (CKD) muscle atrophy. Methods: A total of 24 mice were randomly divided into control group, Acu-LFES group, CKD group, and CKD/Acu-LFES group (n = 6/group). The 5/6 nephrectomy was performed to establish the CKD model in mice. After 20 weeks, the Acu-LFES group and CKD/Acu-LFES group were treated with electroacupuncture at the "Zu San Li" and "Yang Ling Quan" bilaterally points for 15 minutes once. Surface sensing of translation (SUnSET), Reverse Transcription-quantitative PCR(RT-qPCR), immunofluorescence staining, and Western blot were performed to examine each group's state of protein production and myogenic differentiation. we knocked down or exogenously expressed let-7c-5p in C2C12 myoblast, RT-qPCR, and Western blot were performed to examine protein synthesis and myogenic differentiation. Results: The protein expressions of MyoD and Myogenin (MyoG) were decreased in the CKD group (P = .029 and P = .026) concomitant with a decrease in the muscle fiber cross-sectional area. Acu-LFES prevented muscle atrophy in CKD mice. The protein expressions of MyoD and MyoG were increased in the CKD/Acu-LFES group (P = .006 and P = .001). In muscle of CKD mice, IGF1, IGF1R, IRS1, phosphorylated mTOR and P70S6K proteins were decreased compared with control muscle (P = .001, P = .007, P < .001, P < .001 and P < .001), whereas atrogin-1/MAFbx and MuRF1 were dramatically increased (P < .001). Acu-LFES reversed these phenomena, indicating IGF1/mTOR signaling pathway was induced to promote muscle protein synthesis and myogenic differentiation. Meanwhile, Acu-LFES caused a decrease of let-7c-5p in skeletal muscle of CKD mice (P = .034). Inhibiting let-7c-5p promoted C2C12 myogenic differentiation (P = .002 and P = .001) and increased IGF1, IGF1R, IRS1 levels while upregulating mTOR and P70S6K phosphorylation (P < .001, P = .002, P = .009, P < .001 and P = .007). It is interesting to observe that the abundance of atrogin-1/MAFbx and MuRF-1 was unaffected by let-7c-5p (P > .05). Conclusions: Acu-LFES-reduced expression of let-7c-5p can ameliorate CKD-induced skeletal muscle atrophy by upregulating the IGF1/mTOR signaling pathway, which enhances skeletal muscle protein synthesis and myogenic differentiation. Let-7c-5p may be a potential regulator for the treatment of muscle atrophy.


Asunto(s)
Electroacupuntura , Insuficiencia Renal Crónica , Ratones , Animales , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Insuficiencia Renal Crónica/terapia , Serina-Treonina Quinasas TOR/metabolismo
7.
Cancer Lett ; 581: 216498, 2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38029539

RESUMEN

Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.


Asunto(s)
Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Gástricas/patología , Microambiente Tumoral
8.
Kidney Dis (Basel) ; 9(5): 398-407, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37901714

RESUMEN

Introduction: Due to the wide variation in the prognosis of autosomal dominant polycystic kidney disease (ADPKD), prediction of risk of renal survival in ADPKD patients is a tough challenge. We aimed to establish a nomogram for the prediction of renal survival in ADPKD patients. Methods: We conducted a retrospective observational cohort study in 263 patients with ADPKD. The patients were randomly assigned to a training set (N = 198) and a validation set (N = 65), and demographic and statistical data at baseline were collected. The total kidney volume was measured using stereology. A clinical prediction nomogram was developed based on multivariate Cox regression results. The performance and clinical utility of the nomogram were assessed by calibration curves, the concordance index (C-index), and decision curve analysis (DCA). The nomogram was compared with the height-adjusted total kidney volume (htTKV) model by receiver operating characteristic curve analysis and DCA. Results: The five independent factors used to construct the nomogram for prognosis prediction were age, htTKV, estimated glomerular filtration rate, hypertension, and hemoglobin. The calibration curve of predicted probabilities against observed renal survival indicated excellent concordance. The model showed very good discrimination with a C-index of 0.91 (0.83-0.99) and an area under the curve of 0.94, which were significantly higher than those of the htTKV model. Similarly, DCA demonstrated that the nomogram had a better net benefit than the htTKV model. Conclusion: The risk prediction nomogram, incorporating easily assessable clinical parameters, was effective for the prediction of renal survival in ADPKD patients. It can be a useful clinical adjunct for clinicians to evaluate the prognosis of ADPKD patients and provide individualized decision-making.

9.
Clin Respir J ; 17(9): 865-873, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37533295

RESUMEN

OBJECTIVE: This study aimed to summarize and analyze the characteristics of pulmonary sequestration to improve our understanding of this disease. METHODS: Between January 2019 and April 2023, the clinical data of 13 patients with pulmonary sequestration underwent surgical treatment at the First Affiliated Hospital of Gannan Medical University. RESULTS: The male-to-female ratio was 4:9, the age was 0.5 to 60 years, and the average age was 38 ± 19 years. There were 10 and 3 cases of intralobar and extralobar pulmonary sequestration, respectively. Chest enhanced computed tomography (CT) and three-dimensional vascular reconstruction showed that the abnormal blood vessels were derived from the descending thoracic aorta in nine cases and from other blood vessels in four cases. Three patients underwent thoracoscopic lobectomy, two underwent thoracoscopic segmentectomy, and eight underwent thoracoscopic wedge resection. All the patients successfully completed the surgery and were discharged postoperatively. CONCLUSIONS: Some patients with pulmonary sequestration exhibit no obvious symptoms. Patients with clinical symptoms are easily confused for pneumonia, bronchial cysts, lung abscesses, and lung tumors; therefore, patients with pulmonary sequestration are prone to missed diagnosis and misdiagnosis. Currently, enhanced chest CT combined with three-dimensional vascular reconstruction can accurately show the course, branches, and relationship with the mass of the feeding artery. Routine pathological examination is helpful to further clarify the diagnosis of pulmonary sequestration. Minimally invasive thoracoscopic surgery is the preferred treatment for patients with pulmonary sequestration. Surgical resection is safe and feasible, and satisfactory results are typically obtained.


Asunto(s)
Secuestro Broncopulmonar , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Lactante , Preescolar , Niño , Adolescente , Secuestro Broncopulmonar/diagnóstico por imagen , Secuestro Broncopulmonar/cirugía , Estudios Retrospectivos , Cirugía Torácica Asistida por Video/métodos , Pronóstico , Tomografía Computarizada por Rayos X
10.
Adv Sci (Weinh) ; 10(27): e2301190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469018

RESUMEN

RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.


Asunto(s)
Transducción de Señal , Neoplasias Gástricas , Humanos , Fosfatidilinositol 3-Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
Biochem Pharmacol ; 212: 115578, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37137415

RESUMEN

The brain renin-angiotensin system (RAS) has recently been implicated in the development of substance abuse and addiction. However, the integrative roles of the two counter-regulating RAS arms, including the ACE1/Ang II/AT1R axis and the ACE2/Ang(1-7)/MasR axis, in alcohol addiction remain unclear. Using the 20% ethanol intermittent-access two-bottle-choice (IA2BC) paradigm, we observed significant alcohol preference and addictive behaviors in rats. Additionally, we observed significant disruption in the RAS and redox homeostasis in the ventral tegmental area (VTA), as indicated by upregulation of ACE1 activities, Ang II levels, AT1R expression, and glutathione disulfide contents, as well as downregulation of ACE2 activities, Ang(1-7) levels, MasR expression and glutathione content. Moreover, dopamine accumulated in the VTA and nucleus accumbens of IA2BC rats. Intra-VTA infusion of the antioxidant tempol substantially attenuated RAS imbalance and addictive behaviors. Intra-VTA infusion of the ACE1 inhibitor captopril significantly reduced oxidative stress, alcohol preference, addictive behaviors, and dopamine accumulation, whereas intra-VTA infusion of the ACE2 inhibitor MLN4760 had the opposite effects. The anti-addictive effects of the ACE2/Ang(1-7)/MasR axis were further observed using intra-VTA infusion of Ang(1-7) and a MasR-specific antagonist A779. Therefore, our findings suggest that excessive alcohol intake causes RAS imbalance via oxidative stress, and that a dysregulated RAS in the VTA contributes to alcohol addiction by stimulating oxidative stress and dopaminergic neurotransmission. Breaking the vicious cycle of RAS imbalance and oxidative stress using brain-permeable antioxidants, ACE1 inhibitors, ACE2 activators, or Ang(1-7) mimetics thus represents a promising strategy for combating alcohol addiction.


Asunto(s)
Alcoholismo , Sistema Renina-Angiotensina , Ratas , Animales , Dopamina/farmacología , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Proto-Oncogenes Mas , Estrés Oxidativo , Angiotensina I/farmacología , Angiotensina I/metabolismo , Antioxidantes/farmacología , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo
12.
Drug Dev Res ; 84(4): 703-717, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36896715

RESUMEN

A series of thioether pleuromutilin derivatives containing 1,2,4-triazole on the side chain of C14 were designed and synthesized. The in vitro antibacterial activities experiments of the synthesized derivatives showed that compounds 72 and 73 displayed superior in vitro antibacterial effect against MRSA minimal inhibitory concentration (MIC = 0.0625 µg/mL) than tiamulin (MIC = 0.5 µg/mL). The results of time-kill study and postantibiotic effect study indicated that compound 72 could inhibit the growth of MRSA quickly (-2.16 log10 CFU/mL) and showed certain postantibiotic effect (PAE) time (exposure to 2 × MIC and 4 × MIC for 2 h, the PAE was 1.30 and 1.35 h) against MRSA. Furthermore, the binding mode between compound 72 and 50S ribosome of MRSA was explored by molecular docking and five hydrogen bonds were formed between compound 72 and 50S ribosome.


Asunto(s)
Antibacterianos , Compuestos Policíclicos , Simulación del Acoplamiento Molecular , Antibacterianos/química , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Pleuromutilinas
13.
Cell Prolif ; 56(9): e13436, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36855927

RESUMEN

Haploid embryonic stem cells (haESCs) are derived from the inner cell mass of the haploid blastocyst, containing only one set of chromosomes. Extensive and accurate chromatin remodelling occurs during haESC derivation, but the intrinsic transcriptome profiles and chromatin structure of haESCs have not been fully explored. We profiled the transcriptomes, nucleosome positioning, and key histone modifications of four mouse haESC lines, and compared these profiles with those of other closely-related stem cell lines, MII oocytes, round spermatids, sperm, and mouse embryonic fibroblasts. haESCs had transcriptome profiles closer to those of naïve pluripotent stem cells. Consistent with the one X chromosome in haESCs, Xist was repressed, indicating no X chromosome inactivation. haESCs and ESCs shared a similar global chromatin structure. However, a nucleosome depletion region was identified in 2056 promoters in ESCs, which was absent in haESCs. Furthermore, three characteristic spatial relationships were formed between transcription factor motifs and nucleosomes in both haESCs and ESCs, specifically in the linker region, on the nucleosome central surface, and nucleosome borders. Furthermore, the chromatin state of 4259 enhancers was off in haESCs but active in ESCs. Functional annotation of these enhancers revealed enrichment in regulation of the cell cycle, a predominantly reported mechanism of haESC self-diploidization. Notably, the transcriptome profiles and chromatin structure of haESCs were highly preserved during passaging but different from those of differentiated cell types.


Asunto(s)
Cromatina , Transcriptoma , Animales , Masculino , Ratones , Haploidia , Transcriptoma/genética , Cromatina/genética , Cromatina/metabolismo , Nucleosomas/metabolismo , Fibroblastos , Semen , Células Madre Embrionarias
14.
Front Oncol ; 13: 1151434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969077

RESUMEN

Purpose: Aimed to identify the anti-uterine corpus endometrial carcinoma (UCEC) function and characterize the mechanism of quercetin in the treatment of patients infected with COVID-19 via integrated in silico analysis. Methods: The Cancer Genome Atlas and Genotype Tissue Expression databases were applied to obtain differentially expressed genes of UCEC and non-tumor tissue. Several in silico methods such as network pharmacology, functional enrichment analysis, Cox regression analyses, somatic mutation analysis, immune infiltration and molecular docking were used to investigate and analysis the biological targets, functions and mechanisms of anti-UCEC/COVID-19 of quercetin. Multiple methods such as CCK8 assay, Transwell assay and western blotting were performed to test proliferation, migration, and protein level of UCEC (HEC-1 and Ishikawa) cells. Results: Functional analysis disclosed that quercetin against UCEC/COVID-19 mainly by 'biological regulation', 'response to stimulus', and 'regulation of cellular process'. Then, regression analyses indicated that 9 prognostic genes (including ANPEP, OAS1, SCGB1A1, HLA-A, NPPB, FGB, CCL2, TLR4, and SERPINE1) might play important roles in quercetin for treating UCEC/COVID-19. Molecular docking analysis revealed that the protein products of 9 prognostic genes were the important anti-UCEC/COVID-19 biological targets of quercetin. Meanwhile, the proliferation and migration of UCEC cells were inhibited by quercetin. Moreover, after treatment with quercetin, the protein level of ubiquitination-related gene ISG15 was decreased in UCEC cells in vitro. Conclusions: Taken together, this study provides new treatment option for UCEC patients infected with COVID-19. Quercetin may work by reducing the expression of ISG15 and participating in ubiquitination-related pathways.

15.
Pathol Oncol Res ; 29: 1610976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969562

RESUMEN

Background: Esophageal carcinoma (ESCA), a common malignant tumor of the digestive tract with insidious onset, is a serious threat to human health. Despite multiple treatment modalities for patients with ESCA, the overall prognosis remains poor. Apolipoprotein C1 (APOC1) is involved in tumorigenesis as an inflammation-related molecule, and its role in esophageal cancer is still unknown. Methods: We downloaded documents and clinical data using The Cancer Genome Atlas (TCGA)and Gene Expression Omnibus (GEO) databases. We also conducted bioinformatics studies on the diagnostic value, prognostic value, and correlation between APOC1 and immune infiltrating cells in ESCA through STRING (https://cn.string-db.org/), the TISIDB (http://cis.hku.hk/TISIDB/) website, and various other analysis tools. Results: In patients with ESCA, APOC1 was significantly more highly expressed in tumor tissues than in normal tissues (p < 0.001). APOC1 could diagnose ESCA more accurately and determine the TNM stage and disease classification with high accuracy (area under the curve, AUC≥0.807). The results of the Kaplan-Meier curve analysis showed that APOC1 has prognostic value for esophageal squamous carcinoma (ESCC) (p = 0.043). Univariate analysis showed that high APOC1 expression in ESCC was significantly associated with worse overall survival (OS) (p = 0.043), and multivariate analysis shows that high APOC1 expression was an independent risk factor for the OS of patients with ESCC (p = 0.030). In addition, the GO (gene ontology)/KEGG (Kyoto encyclopedia of genes and genomes) analysis showed a concentration of gene enrichment in the regulation of T-cell activation, cornification, cytolysis, external side of the plasma membrane, MHC protein complex, MHC class II protein complex, serine-type peptidase activity, serine-type endopeptidase activity, Staphylococcus aureus infection, antigen processing and presentation, and graft-versus-host disease (all p < 0.001). GSEA (gene set enrichment analysis) showed that enrichment pathways such as immunoregulatory-interactions between a lymphoid and non-lymphoid cell (NES = 1.493, p. adj = 0.023, FDR = 0.017) and FCERI-mediated NF-KB activation (NES = 1.437, p. adj = 0.023, FDR = 0.017) were significantly enriched in APOC1-related phenotypes. In addition, APOC1 was significantly associated with tumor immune infiltrating cells and immune chemokines. Conclusion: APOC1 can be used as a prognostic biomarker for esophageal cancer. Furthermore, as a novel prognostic marker for patients with ESCC, it may have potential value for further investigation regarding the diagnosis and treatment of this group of patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Apolipoproteína C-I/genética , Pronóstico , Carcinogénesis/genética , Transformación Celular Neoplásica , Serina
16.
Biotechnol Appl Biochem ; 70(2): 634-644, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35856403

RESUMEN

Lung cancer is the most frequent type of cancer affecting both men and women globally, and it is associated with a high mortality rate. It is clinically treated with cisplatin, a platinum-based drug that works by generating DNA lesions, which activates DNA damage response and induces cell death. However, chemoresistance by cancer cells limits the clinical usefulness of cisplatin as an anticancer drug. Here, we uncovered a role of ubiquitin-specific protease 51 (USP51) in the chemosensitivity of lung cancer cells to cisplatin by regulating DNA damage response. USP51 was more upregulated in lung cancer tissues of chemotherapy-resistant patients than those of chemotherapy-sensitive patients with adjacent, nontumor tissues. USP51 overexpression in lung cancer cells in vitro reduced γ-H2AX formation and promoted checkpoint kinase 1 (CHK1) phosphorylation, whereas USP51 knockdown showed opposite effects, indicating that USP51 played an important role in promoting DNA damage repair. Finally, USP51 knockdown weakened cisplatin resistance in A549/DDP cells and significantly suppressed tumor growth in vivo, suggesting that a USP51 inhibitor combined with cisplatin may be considered as an effective treatment strategy to eliminate drug-resistant lung cancer cells.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/patología , Antineoplásicos/farmacología , Línea Celular Tumoral , Daño del ADN , Apoptosis , Proliferación Celular , Proteasas Ubiquitina-Específicas/genética
17.
PLoS One ; 17(11): e0276811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36441701

RESUMEN

The genetic modification of cattle has many agricultural and biomedical applications. However, random integration often leads to the unstable or differentially expression of the exogenous genes, which limit the application and development of transgenic technologies. Finding a safe locus suitable for site-specific insertion and efficient expression of exogenous genes is a good way to overcome these hurdles. In this study, we efficiently integrated three targeted vector into the cattle Rosa26 (cRosa26) by CRISPR/Cas9 technology in which EGFP was driven by CAG, EF1a, PGK and cRosa26 endogenous promoter respectively. The CRISPR/Cas9 knock-in system allows highly efficient gene insertion of different expression units at the cRosa26 locus. We also find that in the four cell lines, EGFP was stable expressed at different times, and the CAG promoter has the highest activity to activate the expression of EGFP, when compared with the cRosa26, EF1a and PGK promoter. Our results proved that cRosa26 was a locus that could integrate different expression units efficiently, and supported the friendly expression of different expression units. Our findings described here will be useful for a variety of studies using cattle.


Asunto(s)
Sistemas CRISPR-Cas , Feto , Bovinos/genética , Animales , Humanos , Femenino , Embarazo , Atención Prenatal , Fibroblastos , Investigación
18.
Front Immunol ; 13: 967921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211353

RESUMEN

Current non-invasive tumor biomarkers failed to accurately identify patients with colorectal cancer (CRC), delaying CRC diagnosis and thus leading to poor prognosis. Dysregulation of 5-Methylcytosine (m5C) RNA has gradually been reported in various cancers, but their role in tumor diagnosis is rarely mentioned. Our study aimed to determine the role of m5C methylation modification in blood immune cells for the diagnosis of CRC. Peripheral blood samples were obtained from a total of 83 healthy controls and 196 CRC patients. We observed that m5C RNA contents in blood immune cells of CRC patients were markedly enhanced in both training set and validation set. Moreover, levels of m5C increased with CRC progression and metastasis but reduced after treatment. Compared with common blood tumor biomarkers, m5C levels in peripheral blood immune cells had superior discrimination and reclassification performance in diagnosing CRC. Besides, bioinformatics and qRT-PCR analysis identified increased expression of m5C-modified regulators NSUN5 and YBX1 in CRC patients' blood. A series of animal models and cell co-culture models further demonstrated that CRC tumor cells could increase immune cells' m5C levels and m5C-modified regulators. Monocyte was the predominant m5C-modified immune cell type in CRC patients' blood by Gene set variation analysis (GSVA). Taken together, m5C methylation modification in peripheral blood immune cells was a promising biomarker for non-invasive diagnosis of CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , 5-Metilcitosina , Animales , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética
19.
Comput Math Methods Med ; 2022: 4173738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267314

RESUMEN

Objective: The diagnostic value of CT window width technique in primary omentum infarction was evaluated by this study. Methods: The abdominal CT data of 32 patients with clinically diagnosed abdominal omentum infarction were retrospectively selected and analyzed. The fixed window position was 50 HU, and the window width was 135 HU, 250 HU (abdomen), 350 HU (mediastinum), and 500 HU, respectively. The detection rate of lesions was analyzed and compared. Results: Window widths of 135 HU, 250 HU (abdomen), 350 HU (mediastinum), and 500 HU have a detection rate of 12.5% (4 cases), 62.5% (20 cases), 100% (32 cases), 100% (32 cases) for abdominal omental lesions, respectively. However, 500 HU showed worse abdominal bowel and parenchymal organs than 350 HU. Conclusion: According to the comprehensive image quality, the ideal window width for diagnosis of primary omentum infarction is 350HU (mediastinal) window width.


Asunto(s)
Epiplón , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Epiplón/diagnóstico por imagen , Abdomen , Infarto/diagnóstico por imagen
20.
Mol Carcinog ; 61(12): 1161-1176, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36193777

RESUMEN

Emerging evidence indicates that circular RNAs (circRNAs) play important roles in disease development, especially in cancers. Analysis of circRNA expression microarrays from the Gene Expression Omnibus database revealed that circPIBF1 was highly upregulated in lung adenocarcinoma (LUAD). The main aim of this study was to probe the function of circPIBF1 in pyroptosis of LUAD cells and the signal transduction pathways involved. CircPIBF1 was significantly overexpressed in LUAD and was related to the dismal prognosis of patients with LUAD. CircPIBF1 could bind to nuclear factor erythroid 2-related factor 2 (Nrf2), which further promoted the expression of superoxide dismutase 2 (SOD2). In addition, Nrf2 was also observed to recruit histone acetyltransferase E1A binding protein p300 (EP300) to enhance H3K27ac modification of SOD2, thus modulating the Nrf2-Keap1 signaling pathway. Moreover, we found that knockdown of circPIBF1 significantly suppressed the expression of SOD2 in cells and LUAD cell growth, while enhanced the expression of pyroptosis-related factors, which were further reversed by overexpression of SOD2 or EP300. Collectively, our findings suggest a direct involvement of circPIBF1 in pyroptosis-related LUAD carcinogenesis and implicate a role of Nrf2/EP300/SOD2 signaling in this process.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pulmonares/patología , Regulación Neoplásica de la Expresión Génica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/patología , ARN Circular/genética , Proliferación Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...