Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174478, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964381

RESUMEN

Perfluorooctane sulfonate (PFOS), a class of synthetic chemicals detected in various environmental compartments, has been associated with dysfunctions of the human central nervous system (CNS). However, the underlying neurotoxicology of PFOS exposure is largely understudied due to the lack of relevant human models. Here, we report bioengineered human midbrain organoid microphysiological systems (hMO-MPSs) to recapitulate the response of a fetal human brain to multiple concurrent PFOS exposure conditions. Each hMO-MPS consists of an hMO on a fully 3D printed holder device with a perfusable organoid adhesion layer for enhancing air-liquid interface culturing. Leveraging the unique, simply-fabricated holder devices, hMO-MPSs are scalable, easy to use, and compatible with conventional well-plates, and allow easy transfer onto a multiple-electrode array (MEA) system for plug-and-play measurement of neural activity. Interestingly, the neural activity of hMO-MPSs initially increased and subsequently decreased by exposure to a concentration range of 0, 30, 100, to 300 µM of PFOS. Furthermore, PFOS exposure impaired neural development and promoted neuroinflammation in the engineered hMO-MPSs. Along with PFOS, our platform is broadly applicable for studies toxicology of various other environmental pollutants.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Mesencéfalo , Organoides , Fluorocarburos/toxicidad , Humanos , Ácidos Alcanesulfónicos/toxicidad , Organoides/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Embarazo , Femenino , Sistemas Microfisiológicos
2.
Cell Stem Cell ; 31(6): 818-833.e11, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754427

RESUMEN

The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.


Asunto(s)
Barrera Hematoencefálica , Hemangioma Cavernoso del Sistema Nervioso Central , Organoides , Células Madre Pluripotentes , Humanos , Organoides/patología , Organoides/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/metabolismo , Células Madre Pluripotentes/metabolismo , Modelos Biológicos
3.
Mol Genet Metab Rep ; 39: 101069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516405

RESUMEN

Background: Glycogen Storage disease type 4 (GSD4), a rare disease caused by glycogen branching enzyme 1 (GBE1) deficiency, affects multiple organ systems including the muscles, liver, heart, and central nervous system. Here we report a GSD4 patient, who presented with severe hepatosplenomegaly and cardiac ventricular hypertrophy. GBE1 sequencing identified two variants: a known pathogenic missense variant, c.1544G>A (p.Arg515His), and a missense variant of unknown significance (VUS), c.2081T>A (p. Ile694Asn). As a liver transplant alone can exacerbate heart dysfunction in GSD4 patients, a precise diagnosis is essential for liver transplant indication. To characterize the disease-causing variant, we modeled patient-specific GBE1 deficiency using CRISPR/Cas9 genome-edited induced pluripotent stem cells (iPSCs). Methods: iPSCs from a healthy donor (iPSC-WT) were genome-edited by CRISPR/Cas9 to induce homozygous p.Ile694Asn in GBE1 (iPSC-GBE1-I694N) and differentiated into hepatocytes (iHep) or cardiomyocytes (iCM). GBE1 enzyme activity was measured, and PAS-D staining was performed to analyze polyglucosan deposition in these cells. Results: iPSCGBE1-I694N differentiated into iHep and iCM exhibited reduced GBE1 protein level and enzyme activity in both cell types compared to iPSCwt. Both iHepGBE1-I694N and iCMGBE1-I694N showed polyglucosan deposits correlating to the histologic patterns of the patient's biopsies. Conclusions: iPSC-based disease modeling supported a loss of function effect of p.Ile694Asn in GBE1. The modeling of GBE1 enzyme deficiency in iHep and iCM cell lines had multi-organ findings, demonstrating iPSC-based modeling usefulness in elucidating the effects of novel VUS in ultra-rare diseases.

4.
Math Biosci Eng ; 21(1): 415-443, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303429

RESUMEN

The consensus problem of discrete time-varying linear multi-agent systems (MASs) is studied in this paper. First, an event-triggered intermittent control (ETIC) protocol is designed, aided by a class of auxiliary functions. Under this protocol, some sufficient conditions for all agents to achieve consensus are established by constructing an error dynamical system and applying the Lyapunov function. Second, in order to further reduce the communication burden, an improved event triggered intermittent control (I-ETIC) strategy is presented, along with corresponding convergence analysis. Notably, the difference between the two control protocols lies in the fact that the former protocol only determines when to control or not based on the trigger conditions, while the latter, building upon this, designs new event trigger conditions for the update of the controller during the control stage. Finally, two numerical simulation examples are provided to demonstrate the effectiveness of the theoretical results.

5.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370768

RESUMEN

To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights: BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.

6.
iScience ; 27(1): 108599, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38170020

RESUMEN

Valvular heart disease presents a significant health burden, yet advancements in valve biology and therapeutics have been hindered by the lack of accessibility to human valve cells. In this study, we have developed a scalable and feeder-free method to differentiate human induced pluripotent stem cells (iPSCs) into endocardial cells, which are transcriptionally and phenotypically distinct from vascular endothelial cells. These endocardial cells can be challenged to undergo endothelial-to-mesenchymal transition (EndMT), after which two distinct populations emerge-one population undergoes EndMT to become valvular interstitial cells (VICs), while the other population reinforces their endothelial identity to become valvular endothelial cells (VECs). We then characterized these populations through bulk RNA-seq transcriptome analyses and compared our VIC and VEC populations to pseudobulk data generated from normal valve tissue of a 15-week-old human fetus. By increasing the accessibility to these cell populations, we aim to accelerate discoveries for cardiac valve biology and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA