Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animal Model Exp Med ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38013618

RESUMEN

BACKGROUND: Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength. However, current anti-resorptive drugs carry a risk of various complications. The deep learning-based efficacy prediction system (DLEPS) is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes. This study aimed to explore the protective effect and potential mechanisms of cinobufotalin (CB), a traditional Chinese medicine (TCM), on bone loss. METHODS: DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis. Micro-CT, histological and morphological analysis were applied for the bone protective detection of CB, and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells (hBMMSCs) were also investigated. The underlying mechanism was verified using qRT-PCR, Western blot (WB), immunofluorescence (IF), etc. RESULTS: A safe concentration (0.25 mg/kg in vivo, 0.05 µM in vitro) of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs. Both BMPs/SMAD and Wnt/ß-catenin signaling pathways participated in CB-induced osteogenic differentiation, further regulating the expression of osteogenesis-associated factors, and ultimately promoting osteogenesis. CONCLUSION: Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss, further promoting osteogenic differentiation/function of hBMMSCs, with BMPs/SMAD and Wnt/ß-catenin signaling pathways involved.

2.
Biomed Pharmacother ; 166: 115332, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597324

RESUMEN

Both estrogen deficiency and aging may lead to osteoporosis. Developing novel drugs for treating osteoporosis is a popular research direction. We screened several potential therapeutic agents through a new deep learning-based efficacy prediction system (DLEPS) using transcriptional profiles for osteoporosis. DLEPS screening led to a potential novel drug examinee, ataluren, for treating osteoporosis. Ataluren significantly reversed bone loss in ovariectomized mice. Next, ataluren significantly increased human bone marrow-derived mesenchymal stem cell (hBMMSC) osteogenic differentiation without cytotoxicity, indicated by the high expression index of osteogenic differentiation genes (OCN , BGLAP, ALP, COL1A, BMP2, RUNX2). Mechanistically, ataluren exerted its function through the BMP-SMAD pathway. Furthermore, it activated SMAD phosphorylation but osteogenic differentiation was attenuated by BMP2-SMAD inhibitors or small interfering RNA of BMP2. Finally, ataluren significantly reversed bone loss in aged mice. In summary, our findings suggest that the DLEPS-screened ataluren may be a therapeutic agent against osteoporosis by aiding hBMMSC osteogenic differentiation.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Humanos , Femenino , Animales , Ratones , Osteogénesis , Osteoporosis/prevención & control , Envejecimiento , Ovariectomía
3.
Animal Model Exp Med ; 6(6): 573-584, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37565509

RESUMEN

BACKGROUND: The effect of platelet factor 4 (PF4) on bone marrow mesenchymal stem cells (BMMSCs) and osteoporosis is poorly understood. Therefore, this study aimed to evaluate the effects of PF4-triggered bone destruction in mice and determine the underlying mechanism. METHODS: First, in vitro cell proliferation and cell cycle of BMMSCs were assessed using a CCK8 assay and flow cytometry, respectively. Osteogenic differentiation was confirmed using staining and quantification of alkaline phosphatase and Alizarin Red S. Next, an osteoporotic mouse model was established by performing bilateral ovariectomy (OVX). Furthermore, the PF4 concentrations were obtained using enzyme-linked immunosorbent assay. The bone microarchitecture of the femur was evaluated using microCT and histological analyses. Finally, the key regulators of osteogenesis and pathways were investigated using quantitative real-time polymerase chain reaction and Western blotting. RESULTS: Human PF4 widely and moderately decreased the cell proliferation and osteogenic differentiation ability of BMMSCs. Furthermore, the levels of PF4 in the serum and bone marrow were generally increased, whereas bone microarchitecture deteriorated due to OVX. Moreover, in vivo mouse PF4 supplementation triggered bone deterioration of the femur. In addition, several key regulators of osteogenesis were downregulated, and the integrin α5-focal adhesion kinase-extracellular signal-regulated kinase (ITGA5-FAK-ERK) pathway was inhibited due to PF4 supplementation. CONCLUSIONS: PF4 may be attributed to OVX-induced bone loss triggered by the suppression of bone formation in vivo and alleviate BMMSC osteogenic differentiation by inhibiting the ITGA5-FAK-ERK pathway.


Asunto(s)
Integrina alfa5 , Osteogénesis , Animales , Femenino , Humanos , Ratones , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina alfa5/metabolismo , Integrina alfa5/farmacología , Sistema de Señalización de MAP Quinasas , Factor Plaquetario 4/metabolismo , Factor Plaquetario 4/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
4.
ACS Appl Mater Interfaces ; 15(23): 27486-27501, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37212747

RESUMEN

Currently, healing of large bone defects faces significant challenges such as a bulk of bone regeneration and revascularization on the bone defect region. Here, a "cell-free scaffold engineering" strategy that integrates strontium (Sr) and highly bioactive serum exosomes (sEXOs) inside a three-dimensional (3D)-printed titanium (Ti) scaffold (Sc) is first developed. The constructed SrTi Sc can serve as a sophisticated biomaterial platform for maintaining bone morphological characteristics of the radius during the period of critical bone defect (CBD) repair and further accelerating bone formation and fibroblastic suppression via the controlled release of Sr from the superficial layer of the scaffold. Moreover, compared with sEXO from healthy donors, the sEXO extracted from the serum of the femoral fracture rabbit model at the stage of fracture healing, named BF EXO, is robustly capable of facilitating osteogenesis and angiogenesis. In addition, the underlying therapeutic mechanism is elucidated, whereby altering miRNAs shuttled by BF EXO enables osteogenesis and angiogenesis. Further, the in vivo study revealed that the SrTi Sc + BF EXO composite dramatically accelerated bone repair via osteoconduction, osteoinduction, and revascularization in radial CBD of rabbits. This study broadens the source and biomedical potential of specifically functionalized exosomes and provides a comprehensive clinically feasible strategy for therapeutics on large bone defects.


Asunto(s)
Exosomas , Osteogénesis , Animales , Conejos , Titanio/farmacología , Estroncio/farmacología , Regeneración Ósea , Andamios del Tejido , Curación de Fractura , Impresión Tridimensional
5.
Mater Today Bio ; 19: 100595, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36910271

RESUMEN

The biological functions of rare-earth elements (REEs) have become a focus of intense research. Recent studies have demonstrated that ion doping or alloying of some REEs can optimize the properties of traditional biomaterials. Europium (Eu), which is an REE with low toxicity and good biocompatibility, has promising applications in biomedicine. This article systematically reviews the osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties of Eu-containing biomaterials, thereby paving the way for biomedical applications of Eu. Data collection for this review was completed in October 2022, and 30 relevant articles were finally included. Most articles indicated that doping of Eu ions or Eu-compound nanoparticles in biomaterials can improve their osteogenic, angiogenic, neuritogenic, antibacterial, and anti-tumor properties. The angiogenic, antibacterial, and potential neuritogenic effects of Eu(OH)3 nanoparticles have also been demonstrated.

6.
Artículo en Inglés | MEDLINE | ID: mdl-36913521

RESUMEN

Zirconia as a promising dental implant material has attracted much attention in recent years. Improving the bone binding ability of zirconia is critical for clinical applications. Here, we established a distinct micro-/nano-structured porous zirconia through dry-pressing with addition of pore-forming agents followed by hydrofluoric acid etching (POROHF). Porous zirconia without hydrofluoric acid treatment (PORO), sandblasting plus acid-etching zirconia, and sintering zirconia surface were applied as controls. After human bone marrow mesenchymal stem cells (hBMSCs) were seeded on these four groups of zirconia specimens, we observed the highest cell affinity and extension on POROHF. In addition, the POROHF surface displayed an improved osteogenic phenotype in contrast to the other groups. Moreover, the POROHF surface facilitated angiogenesis of hBMSCs, as confirmed by optimal stimulation of vascular endothelial growth factor B and angiopoietin 1 (ANGPT1) expression. Most importantly, the POROHF group demonstrated the most obvious bone matrix development in vivo. To investigate further the underlying mechanism, RNA sequencing was employed and critical target genes modulated by POROHF were identified. Taken together, this study established an innovative micro-/nano-structured porous zirconia surface that significantly promoted osteogenesis and investigated the potential underlying mechanism. Our present work will improve the osseointegration of zirconia implants and help further clinical applications.

7.
J Transl Med ; 21(1): 8, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36617569

RESUMEN

BACKGROUND: Astronauts undergo significant microgravity-induced bone loss during space missions, which has become one of the three major medical problems hindering human's long-term space flight. A risk-free and antiresorptive drug is urgently needed to prevent bone loss during space missions. D-mannose is a natural C-2 epimer of D-glucose and is abundant in cranberries. This study aimed to investigate the protective effects and potential mechanisms of D-mannose against bone loss under weightlessness. METHODS: The hind legs of tail-suspended (TS) rats were used to mimic weightlessness on Earth. Rats were administered D-mannose intragastrically. The osteoclastogenic and osteogenic capacity of D-mannose in vitro and in vivo was analyzed by micro-computed tomography, biomechanical assessment, bone histology, serum markers of bone metabolism, cell proliferation assay, quantitative polymerase chain reaction, and western blotting. RNA-seq transcriptomic analysis was performed to detect the underlying mechanisms of D-mannose in bone protection. RESULTS: The TS rats showed lower bone mineral density (BMD) and poorer bone morphological indices. D-mannose could improve BMD in TS rats. D-mannose inhibited osteoclast proliferation and fusion in vitro, without apparent effects on osteoblasts. RNA-seq transcriptomic analysis showed that D-mannose administration significantly inhibited the cell fusion molecule dendritic cell-specific transmembrane protein (DC-STAMP) and two indispensable transcription factors for osteoclast fusion (c-Fos and nuclear factor of activated T cells 1 [NFATc1]). Finally, TS rats tended to experience dysuria-related urinary tract infections (UTIs), which were suppressed by treatment with D-mannose. CONCLUSION: D-mannose protected against bone loss and UTIs in rats under weightlessness. The bone protective effects of D-mannose were mediated by inhibiting osteoclast cell fusion. Our findings provide a potential strategy to protect against bone loss and UTIs during space missions.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Ingravidez , Ratas , Humanos , Animales , Ingravidez/efectos adversos , Manosa/farmacología , Manosa/metabolismo , Microtomografía por Rayos X , Osteoclastos , Densidad Ósea , Resorción Ósea/prevención & control , Resorción Ósea/metabolismo
8.
Small ; 19(16): e2205813, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36670083

RESUMEN

Mesenchymal stem cells (MSCs) are widely used in the treatment of diseases. After their in vivo application, MSCs undergo apoptosis and release apoptotic vesicles (apoVs). This study investigates the role of apoVs derived from human bone marrow mesenchymal stem cells (hBMMSCs) in bone metabolism and the molecular mechanism of the observed effects. The results show that apoVs can promote osteogenesis and inhibit osteoclast formation in vitro and in vivo. ApoVs may therefore attenuate the bone loss caused by primary and secondary osteoporosis and stimulate bone regeneration in areas of bone defect. The mechanisms responsible for apoV-induced bone regeneration include the release of miR1324, which inhibit expression of the target gene Sorting Nexin 14 (SNX14) and thus activate the SMAD1/5 pathway in target cells. Given that MSC-derived apoVs are easily obtained and stored, with low risks of immunological rejection and neoplastic transformation, The findings suggest a novel therapeutic strategy to treat bone loss, including via cell-free approaches to bone tissue engineering.


Asunto(s)
Células Madre Mesenquimatosas , Transducción de Señal , Humanos , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Huesos , Regeneración Ósea , Diferenciación Celular/fisiología , Nexinas de Clasificación/metabolismo
9.
Stem Cell Res Ther ; 13(1): 323, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842708

RESUMEN

BACKGROUND: In tissue engineering, mesenchymal stem cells (MSCs) are common seed cells because of abundant sources, strong proliferation ability and immunomodulatory function. Numerous researches have demonstrated that MSC-macrophage crosstalk played a key role in the tissue engineering. Macrophages could regulate the differentiation of MSCs via different molecular mechanisms, including extracellular vesicles. Apoptotic macrophages could generate large amounts of apoptotic vesicles (apoVs). ApoVs are rich in proteins, RNA (microRNAs, mRNAs, ncRNAs, etc.) and lipids, and are a key intercellular communication mediator that can exert different regulatory effects on recipient cells. MiRNAs account for about half of the total RNAs of extracellular vesicles, and play important roles in biological processes such as cell proliferation and differentiation, whereas the functions of macrophage-derived apoVs remain largely unknown. There was no research to clarify the role of macrophage-derived apoVs in MSC fate choices. In this study, we aimed to characterize macrophage-derived apoVs, and investigate the roles of macrophage-derived apoVs in the fate commitment of MSCs. METHODS: We characterized macrophage-derived apoVs, and investigated their role in MSC osteogenesis and adipogenesis in vitro and in vivo. Furthermore, we performed microRNA loss- and gain-of-function experiments and western blot to determine the molecular mechanism. RESULTS: Macrophages could produce a large number of apoVs after apoptosis. MSCs could uptake apoVs. Then, we found that macrophage-derived apoVs inhibited osteogenesis and promoted adipogenesis of MSCs in vitro and in vivo. In mechanism, apoVs were enriched for microRNA155 (miR155), and apoVs regulated osteogenesis and adipogenesis of MSCs by delivering miR155. Besides, miR155 regulated osteogenesis and adipogenesis of MSCs cultured with macrophage-derived apoVs via the SMAD2 signaling pathway. CONCLUSIONS: Macrophage-derived apoVs could regulate the osteogenesis and adipogenesis of MSCs through delivering miR155, which provided novel insights for MSC-mediated tissue engineering.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Adipogénesis/genética , Diferenciación Celular , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética
10.
Bioact Mater ; 13: 53-63, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224291

RESUMEN

Guided bone regeneration membranes have been effectively applied in oral implantology to repair bone defects. However, typical resorbable membranes composed of collagen (Col) have insufficient mechanical properties and high degradation rate, while non-resorbable membranes need secondary surgery. Herein, we designed a photocrosslinkable collagen/polycaprolactone methacryloyl/magnesium (Col/PCLMA/Mg) composite membrane that provided spatiotemporal support effect after photocrosslinking. Magnesium particles were added to the PCLMA solution and Col/PCLMA and Col/PCLMA/Mg membranes were developed; Col membranes and PCL membranes were used as controls. After photocrosslinking, an interpenetrating polymer network was observed by scanning electron microscopy (SEM) in Col/PCL and Col/PCL/Mg membranes. The elastic modulus, swelling behavior, cytotoxicity, cell attachment, and cell proliferation of the membranes were evaluated. Degradation behavior in vivo and in vitro was monitored according to mass change and by SEM. The membranes were implanted into calvarial bone defects of rats for 8 weeks. The Col/PCL and Col/PCL/Mg membranes displayed much higher elastic modulus (p < 0.05), and a lower swelling rate (p < 0.05), than Col membranes, and there were no differences in cell biocompatibility among groups (p > 0.05). The Col/PCL and Col/PCL/Mg membranes had lower degradation rates than the Col membranes, both in vivo and in vitro (p < 0.05). The Col/PCL/Mg groups showed enhanced osteogenic capability compared with the Col groups at week 8 (p < 0.05). The Col/PCL/Mg composite membrane represents a new strategy to display space maintenance and enhance osteogenic potential, which meets clinical needs.

11.
Mater Today Bio ; 13: 100202, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35036897

RESUMEN

Polycaprolactone (PCL) is a polymer material suitable for being prepared into porous scaffolds used in bone tissue engineering, however, insufficient osteogenic ability and mechanical strength limit its application. Zinc (Zn) alloy with proper mechanical strength and osteogenesis is a promising biodegradable metal that have attracted much attention. Herein, we combined the advantages of PCL and Zn by fabricating PCL/Zn composite scaffolds with different Zn powder contents (1 â€‹wt%, 2 â€‹wt%, 3 â€‹wt%) through fused deposition modelling. The â€‹mechanical property, cytocompatibility and Zn â€‹ions release â€‹behavior of PCL/Zn scaffolds were analyzed â€‹in vitro. The osteogenesis and osteoclastogenesis properties of the scaffolds were evaluated by being implanted into Sprague-Dawley rats calvaria defect. Results showed that the PCL/Zn scaffolds exhibited improved mechanical properties and cytocompatibility compared with the pure PCL scaffolds. At 8 weeks after in vivo implantaion, the addition of Zn powder promoted new bone formation, in a dose-dependent manner. The scaffolds with 2 â€‹wt% Zn displayed the best osteogenic effect, while the osteogenic effect was slightly reduced in the scaffolds with 3 â€‹wt% Zn. In the studied Zn contents, the PCL/Zn scaffolds gradually promoted osteoclastogenesis with increasd Zn content. In the 3 â€‹wt% Zn group, TRAP-positive cells were observed on the newly formed bone edges around the scaffolds. These dose-dependent effects were verified in vitro using MC3T3-E1 and RAW264.7 â€‹cells. Finally, we revealed that Zn2+ regulated osteogenesis and osteoclastogenesis by activation of the Wnt/ß-catenin and NF-κB signalling pathways, respectively.

12.
Histol Histopathol ; 36(12): 1219-1234, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34472621

RESUMEN

The increasing demand for bone grafts and the scarcity of donors worldwide are promoting researchers to seek alternatives. The extracellular matrix (ECM) has been reported to enhance properties of osteoconduction and osteoinduction by simulating the molecular structure of bone and facilitating cell infiltration for bone repair. As one of several novel biomaterials, ECM has many desirable properties, including biocompatibility, bioactivity, and biosafety. Thus, we evaluated whether ECM is a promising scaffold biomaterial for bone repair. In this review, we explore ECM composition, the sources and fabrication methods, especially the decellularization technique, of ECM scaffolds. Furthermore, we highlight recent progress in the use of ECM as a scaffold biomaterial for bone repair. Generally, ECM is used in 1) three-dimensional (3D) cell cultures to promote osteogenic differentiation, 2) combinations with other biomaterials to increase their osteogenic effects, 3) 3D printing to produce customized or patient-tailored scaffolds for bone repair, and 4) hydrogels derived from ECM used for bone repair. In addition, we focus on future prospects for application of ECM as a scaffold material used for bone repair. From this review, we expect to have a perfect understanding of ECM-based scaffold materials in the hope that this leads to further research of the production of ECM biomaterials to meet the clinical needs for bone repair.


Asunto(s)
Materiales Biocompatibles/metabolismo , Regeneración Ósea , Sustitutos de Huesos , Huesos/lesiones , Matriz Extracelular , Modelos Biológicos , Dermis Acelular , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Diferenciación Celular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Osteogénesis/fisiología , Impresión Tridimensional
13.
Stem Cell Res Ther ; 12(1): 123, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579372

RESUMEN

INTRODUCTION: To repair bone defects, a variety of bone substitution materials have been used, such as ceramics, metals, natural and synthetic polymers, and combinations thereof. In recent decades, a wide range of synthetic polymers have been used for bone regeneration. These polymers have the advantages of biocompatibility, biodegradability, good mechanical properties, low toxicity, and ease of processing. However, when used alone, they are unable to achieve ideal bone formation. Incorporating zinc (Zn) into synthetic polymers has been considered, as previous studies have shown that Zn2+ promotes stem cell osteogenesis and mineral deposition. The purpose of this systematic review was to provide an overview of the application and effectiveness of Zn in synthetic polymers for bone regeneration, whether used alone or in combination with other biomaterials. This study was performed according to the PRISMA guidelines. MATERIALS AND METHODS: A search of the PubMed, Embase, and the Cochrane Library databases for articles published up to June 2020 revealed 153 relevant studies. After screening the titles, abstracts, and full texts, 13 articles were included in the review; 9 of these were in vitro, 3 were in vivo, and 1 included both in vitro and in vivo experiments. RESULTS: At low concentrations, Zn2+ promoted cell proliferation and osteogenic differentiation, while high-dose Zn2+ resulted in cytotoxicity and inhibition of osteogenic differentiation. Additionally, one study showed that Zn2+ reduced apatite formation in simulated body fluid. In all of the in vivo experiments, Zn-containing materials enhanced bone formation. CONCLUSIONS: At appropriate concentrations, Zn-doped synthetic polymer materials are better able to promote bone regeneration than materials without Zn.


Asunto(s)
Osteogénesis , Zinc , Materiales Biocompatibles , Regeneración Ósea , Polímeros
14.
Ther Adv Chronic Dis ; 11: 2040622320912661, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32341776

RESUMEN

BACKGROUND: D-mannose exhibits strong anti-inflammatory properties, but whether it has beneficial effects on preventing and treating osteoporosis remains unknown. METHODS: Female, 12-month-old senile C57BL6/J mice (s-Man group) and 8-week-old ovariectomized C57BL6/J mice (OVX-Man group) were treated with D-mannose in drinking water for 2 months (six mice/group). Microcomputed tomography analysis and hematoxylin and eosin staining were performed to investigate the effect of D-mannose on attenuation of bone loss. Tartrate-resistant acid phosphatase staining of tissue sections, flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and gut microbiome biodiversity tests were used to explore the underlying mechanisms. RESULTS: D-mannose-induced marked increases in cortical bone volume and trabecular bone microarchitecture in the s-Man and OVX-Man group compared with that in the s-CTRL (senile control) and OVX group, respectively. Moreover, D-mannose downregulated osteoclastogenesis-related cytokines in the bone marrow and expanded regulatory T cells in the spleen of mice. Furthermore, D-mannose reconstructed the gut microbiota and changed the metabolite composition. CONCLUSION: D-mannose attenuated bone loss induced by senility and estrogen deficiency in mice, and this effect may be mediated by D-mannose-induced proliferation of regulatory T cells and gut microbiota-dependent anti-inflammatory effects.

15.
Stem Cells Int ; 2020: 1540905, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256607

RESUMEN

OBJECTIVES: Flufenamic acid (FFA) is a representative of the fenamic acids, an important group of NSAIDs. In the present study, we study the effects of FFA on adipogenesis of human mesenchymal stem cells (MSCs) and we explore the potential mechanism. METHODS: To investigate the effects of FFA on adipogenic differentiation of hMSCs, human adipose-derived stem cells (hASCs) and human bone marrow mesenchymal stem cells (hBMMSCs), representative of hMSCs, were treated with FFA during adipogenic differentiation in vitro. The effects of FFA in vivo were evaluated using a heterotopic adipose formation assay in nude mice as well as ovariectomized (OVX) and aged mice. To explore the mechanism of FFA, Western blot was used to determine activation of the PI3K/AKT signaling pathway. RESULTS: Our results demonstrate that, at certain concentrations, FFA inhibited adipogenesis of human MSCs both in vitro and in vivo. Mechanistically, FFA inhibited adipogenesis of human MSCs by inhibiting the PI3K/AKT pathway. CONCLUSIONS: The present study indicated that FFA could be used to inhibit adipogenesis of human MSCs in tissue engineering and diseases related to excessive adipogenic differentiation of MSCs.

16.
Stem Cell Res Ther ; 11(1): 135, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213190

RESUMEN

BACKGROUND: Bone defects are a common clinical condition that has gained an increasing amount of attention in recent years. Causes of bone defect include tumors, inflammation, and fractures. Bone tissue engineering is a novel treatment of bone defect, and human mesenchymal stem cells (hMSCs) are the ideal seed cells for bone tissue engineering due to their multi-lineage differentiation potential and immunogenicity. The laminin α2 (LAMA2) gene encodes the α2 subunit of laminins. Mutations in this gene have been reported to cause muscular dystrophy, but thus far no studies have elucidated the role of LAMA2 in the fate choices of MSCs. Here, we aimed to investigate the critical role of LAMA2 in the osteogenesis and adipogenesis of mesenchymal stem cells (MSCs). METHODS: We investigated LAMA2 function in osteogenic and adipogenic differentiation of MSCs in vitro and in vivo through loss- and gain-of-function experiments. In addition, molecular mechanism was clarified by Western blot and siRNA. RESULTS: Our results demonstrated that LAMA2 was a critical regulator for fate commitment of MSCs. Both in vitro and in vivo studies indicate that LAMA2 inhibits osteogenesis and promotes adipogenesis. Mechanistically, we found that LAMA2 regulated osteogenesis and adipogenesis of MSCs by modulating the hedgehog signaling pathway. CONCLUSIONS: The present work confirms that LAMA2 is a new molecular target for MSC-based bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Adipogénesis/genética , Diferenciación Celular , Células Cultivadas , Proteínas Hedgehog/genética , Humanos , Laminina/genética , Osteogénesis/genética
17.
Biomed Res Int ; 2020: 2087475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083125

RESUMEN

Poly-ε-caprolactone (PCL) is a promising synthetic material in bone tissue engineering (BTE). Particularly, the introduction of rapid prototyping (RP) represents the possibility of manufacturing PCL scaffolds with customized appearances and structures. Bio-Oss is a natural bone mineral matrix with significant osteogenic effects; however, it has limitations in being constructed and maintained into specific shapes and sites. In this study, we used RP and fabricated a hollow-structured cage-shaped PCL scaffold loaded with Bio-Oss to form a hybrid scaffold for BTE. Moreover, we adopted NaOH surface treatment to improve PCL hydrophilicity and enhance cell adhesion. The results showed that the NaOH-treated hybrid scaffold could enhance the osteogenesis of human bone marrow-derived mesenchymal stem cells (hBMMSCs) both in vitro and in vivo. Altogether, we reveal a novel hybrid scaffold that not only possesses osteoinductive function to promote bone formation but can also be fabricated into specific forms. This scaffold design may have great application potential in bone tissue engineering.


Asunto(s)
Huesos/efectos de los fármacos , Caproatos/química , Caproatos/farmacología , Lactonas/química , Lactonas/farmacología , Animales , Matriz Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Minerales/farmacología , Osteogénesis/efectos de los fármacos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
18.
J Oral Rehabil ; 47 Suppl 1: 83-90, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31209890

RESUMEN

BACKGROUND: Tenofovir disoproxil fumarate (TDF), a primary antiretroviral agent used to treat AIDS, triggers systematic bone loss. However, the effect of TDF on osteopenia or osteoporosis in the jaw remains unclear. TDF-induced bone loss in the jaw, if any, likely involves mandible-derived mesenchymal stem cells (MMSCs), which play a key role in jawbone metabolism. Probiotics prevent long bone loss, and could prove efficacious in treating TDF-induced mandibular bone loss. OBJECTIVES: To determine whether TDF triggers mandibular bone loss, elucidate the underlying mechanisms, and study the effect of Lactobacillus rhamnosus GG (LGG) on TDF-induced bone loss in the jaw. METHODS: Tenofovir disoproxil fumarate was administered orally daily and LGG semiweekly from eight weeks to the end of the study (LGG group) to male C57BL6/J mice. The mice were sacrificed, and body weight (BW) and serum Ca and P were measured. Mandibular histomorphometry was evaluated by micro-CT. MMSCs and LGG culture supernatants were isolated, and MMSC proliferation and ALP production when treated with different concentrations of LGG supernatant and/or TDF were measured. Relative abundance of osteogenic markers was assessed by qPCR. RESULTS: Orally administered LGG protected against bone mass loss and deterioration of bone microarchitecture and increased serum P levels. The BW of the TDF group was highest among the study groups. TDF partially impaired osteogenesis and proliferation of MMSCs. LGG culture supernatant rescued MMSC osteogenesis and proliferation, and osteogenic gene expression. CONCLUSIONS: Lactobacillus rhamnosus GG protected against tenofovir-induced mandibular bone loss in mice by rescuing MMSC proliferation and osteogenesis.


Asunto(s)
Enfermedades Óseas Metabólicas , Células Madre Mesenquimatosas , Probióticos , Animales , Proliferación Celular , Humanos , Masculino , Mandíbula , Ratones , Osteogénesis , Tenofovir
19.
Ther Adv Chronic Dis ; 10: 2040622319860653, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31321013

RESUMEN

BACKGROUND: Although antiretroviral agents trigger bone loss in human immunodeficiency virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone damage, such as osteoporosis. While, the mechanisms are unclear, probiotic supplements may be effective against osteoporosis. METHODS: C57BL6/J mice were administered with Lactobacillus rhamnosus GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry and biomechanics were evaluated using microcomputed tomography, bone slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and intestinal permeability levels were detected using enzyme-linked immunosorbent assays, quantitative real-time polymerase chain reaction, and flow cytometry. The gut microbiota composition and metabolomics were analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and ultra-performance liquid-chromatography-quadrupole time-of-flight mass spectrometry. RESULTS: LGG administered orally induced marked increases in trabecular bone microarchitecture, cortical bone volume, and biomechanical properties in the LGG+TDF group compared with that in the TDF-only group. Moreover, LGG treatment increased intestinal barrier integrity, expanded regulatory T cells, decreased Th17 cells, and downregulated osteoclastogenesis-related cytokines in the bone marrow, spleen, and gut. Furthermore, LGG reconstructed the gut microbiota and changed the metabolite composition, especially lysophosphatidylcholine levels. However, the amount of N-acetyl-leukotriene E4 was the highest in the TDF-only group. CONCLUSION: LGG reconstructed the community structure of the gut microbiota, promoted the expression of lysophosphatidylcholines, and improved intestinal integrity to suppress the TDF-induced inflammatory response, which resulted in attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe and effective strategy to prevent and treat TDF-induced osteoporosis.

20.
Stem Cell Res Ther ; 10(1): 213, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324207

RESUMEN

BACKGROUND: As the representative of fenamic acids, an important group of NSAIDs, flufenamic acid (FFA) has been used for anti-inflammation and analgesia in the clinic. Recently, researches have focused on the role of some members of NSAIDs in promoting osteogenesis. However, little attention has been paid to the subgroup of fenamic acids, and it remains unclear whether FFA and other fenamic acids could regulate mesenchymal stem cells' (MSCs) lineage commitment and bone regeneration. METHODS: Here we treated two kinds of human MSCs with FFA at different concentrations in vitro and examined the effect of FFA on osteogenic differentiation of human MSCs. This was followed by heterotopic bone formation assay in nude mice. In addition, ovariectomized and aged mice were used as osteoporotic models to test the effect of FFA on osteoporosis. Besides, activators and inhibitor of nuclear factor-κB (NF-κB) signaling pathway and western blot were used to clarify the mechanism of the promoting effect of low concentration FFA on osteogenesis. RESULTS: Our results indicated that low concentrations of FFA could significantly enhance osteogenic differentiation of human MSCs in vitro, as well as in vivo. In addition, FFA treatment suppressed bone loss in ovariectomized and aged mice. Mechanistically, FFA at low concentrations promoted osteogenesis differentiation of human MSCs by inhibition of the NF-κB signaling pathway. CONCLUSIONS: Collectively, our study suggested that low concentration FFA could be used in bone tissue engineering or osteoporosis by promoting osteogenic differentiation of human MSCs.


Asunto(s)
Ácido Flufenámico/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Animales , Huesos/citología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Osteoporosis/metabolismo , Ovariectomía , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...