Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2403128, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868919

RESUMEN

Methylcyclohexane (MCH) dehydrogenation is an equilibrium-limited reaction that requires high temperatures (>300 °C) for complete conversion. However, high-temperature operation can degrade catalytic activity and produce unwanted side products. Thus, a hybrid zeolite membrane (Z) is prepared on the inner surface of a tubular support and used it as a wall in a membrane reactor (MR) configuration. Pt/C catalysts is packed diluted with quartz sand inside the Z-coated tube and applied the MR for MCH dehydrogenation at low temperatures (190-250 °C). Z showed a remarkable H2-permselectivity in the presence of both toluene and MCH, yielding separation factors over 350. The Z-based MR achieved higher MCH conversion (75.3% ± 0.8% at 220 °C) than the conventional packed-bed reactor (56.4% ± 0.3%) and the equilibrium state (53.2%), owing to the selective removal of H2 through Z. In summary, the hybrid zeolite MR enhances MCH dehydrogenation at low temperatures by overcoming thermodynamic limitations and improves the catalytic performance and product selectivity of the reaction.

2.
Environ Pollut ; 342: 123074, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048870

RESUMEN

Chlorine (Cl)-containing chemicals, including hydrogen chloride, generated during thermal degradation of polyvinyl chloride (PVC) and corresponding mixture impede the chemical recycling of PVC-containing plastic wastes. While upgrading plastic-derived vapors, the presence of Cl-containing chemicals may deactivate the catalysts. Accordingly, herein, catalytic upgrading of pyrolysis vapor prepared from a mixture of PVC and polyolefins is performed using a fixed-bed reactor comprising zeolites. Among the H-forms of zeolites (namely, ZSM-5, Y, ß, and chabazite) used in this study, a higher yield of gas products composed of hydrocarbons with lower carbon numbers is obtained using H-ZSM-5, thus indicating further decomposition of the pyrolysis vapor to C1-C4 hydrocarbons on it. Although the formation of aromatic compounds is better on H-ZSM-5, product distributions can be adjusted by further modifying the acidic properties via the alteration of the Si/Al molar ratio, and maximum yields of C1-C4 compounds (60.8%) and olefins (64.7%) are achieved using a Si/Al molar ratio of 50. Additionally, metal ion exchange on H-ZSM-5 is conducted, and upgrading of PVC-containing waste-derived vapor to aromatic chemicals and small hydrocarbon molecules was successfully performed using Co-substituted H-ZSM-5. It reveals that the highest yield of gas products on 1.74 wt% cobalt (Co)-substituted H-ZSM-5 is acquired via the selection of an appropriate metal and metal ion concentration adjustment. Nevertheless, introduction of excess Co into the H-ZSM-5 surface decreases the cracking activity, thereby implying that highly distributed Co is required to achieve excellent cracking activity. The addition of Co also adjusted the acid types of H-ZSM-5, and more Lewis acid sites compared to Brønsted acid sites selectively produced olefins and naphthenes over paraffins and aromatics. The proposed approach can be a feasible process to produce valuable petroleum-replacing chemicals from Cl-containing mixed plastic wastes, contributing to the closed loops for upcycling plastic wastes.


Asunto(s)
Cloro , Zeolitas , Zeolitas/química , Hidrocarburos , Alquenos/química , Catálisis
3.
Environ Pollut ; 268(Pt A): 115674, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011609

RESUMEN

CARBOHYDRATE-: or sugar-derived compounds were used as environmentally friendly additives for the depolymerization of Kraft lignin waste and organosolv lignin prepared from Miscanthus giganteus. The yields of the aromatic monomers obtained from Kraft lignin increased from 5.1 to 49.2% with the addition of mannitol, while those obtained from organosolv lignin increased from 44.4 to 83.0% with the addition of sucrose. This improved lignin depolymerization was also confirmed by gel permeation chromatography and nuclear magnetic resonance spectroscopy. The above results clearly indicate the beneficial effects of carbohydrate derivatives on the lignin depolymersization process, more specifically, suggesting that the presence of carbohydrates improve the lignin depolymerization of lignocellulose, as observed for the raw lignocellulose feed.


Asunto(s)
Lignina , Poaceae , Carbohidratos , Catálisis , Cromatografía en Gel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...