Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hepatol ; 80(1): 41-52, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858684

RESUMEN

BACKGROUND & AIMS: HBsAg loss is only observed in a small proportion of patients with chronic hepatitis B (CHB) who undergo interferon treatment. Investigating the host factors crucial for functional cure of CHB can aid in identifying individuals who would benefit from peginterferon-α (Peg-IFNα) therapy. METHODS: We conducted a genome-wide association study (GWAS) by enrolling 48 patients with CHB who achieved HBsAg loss after Peg-IFNα treatment and 47 patients who didn't. In the validation stage, we included 224 patients, of whom 90 had achieved HBsAg loss, to validate the identified significant single nucleotide polymorphisms. To verify the functional involvement of the candidate genes identified, we performed a series of in vitro and in vivo experiments. RESULTS: GWAS results indicated a significant association between the rs7519753 C allele and serum HBsAg loss in patients with CHB after Peg-IFNα treatment (p = 4.85 × 10-8, odds ratio = 14.47). This association was also observed in two independent validation cohorts. Expression quantitative trait locus analysis revealed higher hepatic TP53BP2 expression in individuals carrying the rs7519753 C allele (p = 2.90 × 10-6). RNA-sequencing of liver biopsies from patients with CHB after Peg-IFNα treatment revealed that hepatic TP53BP2 levels were significantly higher in the HBsAg loss group compared to the HBsAg persistence group (p = 0.035). In vitro and in vivo experiments demonstrated that loss of TP53BP2 decreased interferon-stimulated gene levels and the anti-HBV effect of IFN-α. Mechanistically, TP53BP2 was found to downregulate SOCS2, thereby facilitating JAK/STAT signaling. CONCLUSION: The rs7519753 C allele is associated with elevated hepatic TP53BP2 expression and an increased probability of serum HBsAg loss post-Peg-IFNα treatment in patients with CHB. TP53BP2 enhances the response of the hepatocyte to IFN-α by suppressing SOCS2 expression. IMPACT AND IMPLICATIONS: Chronic hepatitis B (CHB) remains a global public health issue. Although current antiviral therapies are more effective in halting disease progression, only a few patients achieve functional cure for hepatitis B with HBsAg loss, highlighting the urgent need for a cure for CHB. This study revealed that the rs7519753 C allele, which is associated with high expression of hepatic TP53BP2, significantly increases the likelihood of serum HBsAg loss in patients with CHB undergoing Peg-IFNα treatment. This finding not only provides a promising predictor for HBsAg loss but identifies a potential therapeutic target for Peg-IFNα treatment. We believe our results are of great interest to a wide range of stakeholders based on their potential clinical implications.


Asunto(s)
Antivirales , Hepatitis B Crónica , Humanos , Antivirales/uso terapéutico , Antígenos de Superficie de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/genética , Estudio de Asociación del Genoma Completo , Quimioterapia Combinada , Interferón-alfa/farmacología , Interferón-alfa/uso terapéutico , Polietilenglicoles/uso terapéutico , Antígenos e de la Hepatitis B , Proteínas Recombinantes/uso terapéutico , Resultado del Tratamiento , ADN Viral/genética , Proteínas Reguladoras de la Apoptosis
2.
FASEB Bioadv ; 3(5): 356-373, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977235

RESUMEN

We previously found that N-89 and its derivative, N-251, which are being developed as antimalarial compounds, showed multiple antiviral activities including hepatitis C virus (HCV). In this study, we focused on the most characterized anti-HCV activity of N-89(N-251) to clarify their antiviral mechanisms. We first prepared cells exhibiting resistance to N-89(N-251) than the parental cells by serial treatment of HCV-RNA-replicating parental cells with N-89(N-251). Then, we newly generated HCV-RNA-replicating cells with the replacement of HCV-RNAs derived from N-89(N-251)-resistant cells and parental cells. Using these cells, we examined the degree of inhibition of HCV-RNA replication by N-89(N-251) and found that the host and viral factors contributed almost equally to the resistance to N-89(N-251). To further examine the contribution of the host factors, we selected several candidate genes by cDNA microarray analysis and found that the upregulated expression of at least RAC2 and CKMT1B genes independently and differently contributed to the acquisition of an N-89(N-251)-resistant phenotype. For the viral factors, we selected several mutation candidates by the genetic comparative analysis of HCV-RNAs and showed that at least one M414I mutation in the HCV NS5B contributed to the resistance to N-89. Moreover, we demonstrated that the combination of host factors (RAC2 and/or CKMT1B) and a viral factor (M414I mutation) additively increased the resistance to N-89. In summary, we identified the host and viral factors contributing to the acquisition of N-89(N-251)-resistance in HCV-RNA replication. These findings will be useful for clarification of the antiviral mechanism of N-89(N-251).

3.
Arch Virol ; 165(2): 331-343, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31832864

RESUMEN

The most characteristic feature of the hepatitis C virus (HCV) genome in patients with chronic hepatitis C is its remarkable variability and diversity. To better understand this feature, we performed genetic analysis of HCV replicons recovered from two human hepatoma HuH-7-derived cell lines after 1, 3, 5, 7, and 9 years in culture: The cell lines 50-1 and sO harbored HCV 1B-1 and O strain-derived HCV replicons established in 2002 and 2003, respectively. The results revealed that genetic variations in both replicons accumulated in a time-dependent manner at a constant rate despite the maintenance of moderate diversity (less than 1.8% difference) between the clones and that the mutation rate in the 50-1 and sO replicons was 2.5 and 2.9 × 10-3 base substitutions/site/year, respectively. We found that the genetic distance of both replicons increased from 7.9% to 10.5% after 9 years in culture. In addition, we observed that the guanine + cytosine (GC) content of both replicon RNAs increased in a time-dependent manner, as observed in our previous studies. Finally, we demonstrated that the high sensitivity of both replicons to direct-acting antivirals was maintained even after 9 years in culture. Our results suggest that long-term cultured HCV replicon-harboring cells are a useful model for understanding the variability and diversity of the HCV genome and the drug sensitivity of HCV in patients with chronic hepatitis C.


Asunto(s)
Variación Genética/genética , Hepacivirus/genética , Replicación Viral/genética , Carcinoma Hepatocelular/virología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Genes Reporteros/genética , Genoma Viral/genética , Genotipo , Hepatitis C Crónica/virología , Humanos , Neoplasias Hepáticas/virología , ARN Viral/genética , Replicón/genética
4.
Biochem Biophys Res Commun ; 515(1): 156-162, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31133379

RESUMEN

Hepatitis B virus (HBV) infection, which increases the risk of cirrhosis and hepatocellular carcinoma and requires lifelong treatment, has become a major global health problem. However, host factors essential to the HBV life cycle are still unclear, and the development of new drugs is needed. Cells derived from the human hepatoma cell line HepG2 and engineered to overexpress sodium taurocholate cotransporting polypeptide (NTCP: a receptor for HBV), termed HepG2/NTCP cells, are widely used as the cell-based HBV infection and replication systems for HBV research. We recently found that human hepatoma cell line Li23-derived cells overexpressing NTCP (A8 cells subcloned from Li23 cells), whose gene expression profile was distinct from that of HepG2/NTCP cells, were also sensitive to HBV infection. However, the HBV susceptibility of A8 cells was around 1/100 that of HepG2/NTCP cells. Since we considered that plural cell assay systems will be needed for the objective evaluation of anti-HBV reagents, as we previously demonstrated in hepatitis C virus research, we here attempted to develop a new Li23 cell-derived assay system equivalent to that using HepG2/NTCP cells. By repeated subcloning of A8 cells, we successfully established a new cell line (A8.15.78.10) exhibiting high HBV susceptibility equal to that of HepG2/NTCP cells. Characterization of A8.15.78.10 cells revealed that the increase of HBV susceptibility was correlated with increases in the protein and glycosylation levels of NTCP, and with decreased expression of STING, a factor contributing to innate immunity. Finally, we performed a comparative evaluation of HBV entry inhibitors (cyclosporin A and rosiglitazone) by an HBV/secNL reporter assay using A8.15.78.10 cells or HepG2/NTCP cells. The results confirmed that cyclosporin A exhibited anti-HBV activity in both cell lines, as previously reported. However, we found that rosiglitazone did not show the anti-HBV activity in A8.15.78.10 cells, although it worked in HepG2/NTCP cells as previously reported. This suggested that the difference in anti-HBV activity between cyclosporin A and rosiglitazone was due to the different types of cells used for the assay. In conclusion, plural assay systems using different types of cells are required for the objective and impartial evaluation of anti-HBV reagents.


Asunto(s)
Carcinoma Hepatocelular/virología , Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Neoplasias Hepáticas/virología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Ciclosporina/farmacología , Células Hep G2 , Virus de la Hepatitis B/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Rosiglitazona/farmacología , Simportadores/genética , Simportadores/metabolismo , Internalización del Virus/efectos de los fármacos
5.
Biochem Biophys Rep ; 15: 1-6, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30023438

RESUMEN

The chemically synthesized endoperoxide compound N-89 and its derivative N-251 were shown to have potent antimalarial activity. We previously demonstrated that N-89 and N-251 potently inhibited the RNA replication of hepatitis C virus (HCV), which belongs to the Flaviviridae family. Since antimalarial and anti-HCV mechanisms have not been clarified, we were interested whether N-89 and N-251 possessed the activity against viruses other than HCV. In this study, we examined the effects of N-89 and N-251 on other flaviviruses (dengue virus and Japanese encephalitis virus) and hepatitis viruses (hepatitis B virus and hepatitis E virus). Our findings revealed that N-89 and N-251 moderately inhibited the RNA replication of Japanese encephalitis virus and hepatitis E virus, although we could not detect those anti-dengue virus activities. We also observed that N-89 and N-251 moderately inhibited the replication of hepatitis B virus at the step after viral translation. These results suggest the possibility that N-89 and N-251 act on some common host factor(s) that are necessary for viral replications, rather than the possibility that N-89 and N-251 directly act on the viral proteins except for HCV. We describe a new type of antiviral reagents, N-89 and N-251, which are applicable to multiple different viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...