Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(8): 12036-12051, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225493

RESUMEN

Treating wastewater with low carbon-to-nitrogen (C/N) ratios by constructed wetlands (CWs) is still problematic. Adding chemicals is costly and may cause secondary pollution. Configuring plant diversity in substrate-based CWs has been found to be a better way to treat low-C/N wastewater, but wastewater treatment in floating CWs needs to be studied. In this study, wastewater with C/N ratios of 5 and 10 were set in simulated floating CWs, and 9 combinations with plant species richness (SR) of 1, 3, and 4 were configured. The results showed that (1) increasing SR improved the total N mass removal (NMR) by 29% at a C/N ratio of 5 but not 10; (2) the presence of Oenanthe javanica in the microcosms increased the NMR by 13% and 20% with C/N ratios of 5 and 10, respectively; (3) increasing SR mitigated the net global warming potential (GWP) by 120% at a C/N ratio of 5 but not 10; and (4) a Hemerocallis fulva × O. javanica × Echinodorus parviflours × Iris hybrids mixture resulted in a high NMR and low net GWP. In summary, assembling plant diversity in floating CWs is an efficient and clean measure during the treatment of wastewater with a C/N ratio of 5.


Asunto(s)
Aguas Residuales , Humedales , Carbono , Efecto Invernadero , Nitrógeno , Desnitrificación , Plantas , Eliminación de Residuos Líquidos/métodos
2.
Ecol Evol ; 12(10): e9438, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36284519

RESUMEN

Due to climate change and increasing anthropogenic activities, lakes are disturbed frequently, usually by press (e.g., diffused pollution, rising temperatures) or pulse (e.g., storms, rainfall, pollution events) disturbances. Both press and pulse disturbances can affect abiotic and biotic environments, changing the structure of ecosystems and affecting ecosystem services. To confront with the effects of climate change and increasing anthropogenic activities, understanding the different effects of press and pulse disturbances on lake ecosystems is essential. This study assessed the effect of press and pulse disturbances of phosphorus on a microcosmic aquatic ecosystem by measuring the total phosphorus (TP), algae density, and physiological indicators of submerged macrophytes. We found that the microcosmic aquatic ecosystem responded differently to press and pulse disturbances. Our results suggested that it had a lower resistance to pulse phosphorus disturbances than to press phosphorus disturbances. There were significantly higher nutrient concentrations and algal densities in the pulse treatment than in the press treatment. Positive feedback was found between the biomass of submerged macrophytes and the water quality. There was a higher submerged macrophytes biomass at low TP concentration and algal density. In the context of climate change, press and pulse disturbances could have severe impacts on lake ecosystems. Our findings will provide some insight for further research and lake management.

3.
Ecol Evol ; 12(8): e9181, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949531

RESUMEN

Reports of the Intergovernmental Panel on Climate Change (IPCC) indicate that temperature rise is still the general trend of the global climate in the 21st century. Invasive species may benefit from the increase in temperature, as climate can be viewed as a resource, and the increase in the available resources favors the invasibility of invasive species. This study aimed to assess the overwintering growth of the cosmopolitan invasive plant water hyacinth (Eichhornia crassipes) at its northern boundary. Using E. crassipes as a model plant, a cross-year mesocosm experiment was conducted to determine 17 plant functional traits, including growth, morphological, root topological, photosynthetic, and stoichiometric traits, under climate warming (ambient, temperature rises of 1.5°C and 3.0°C), and water drawdown or water withdrawal (water depths of 1, 10, and 20 cm) treatments. The overwintering growth of E. crassipes was facilitated by climate warming and proper water drawdown, and climate warming played a leading role. A temperature rises of 3.0°C and a water depth of 10 cm were the most suitable conditions for the overwintering and rooting behavior of the plant. Controlling the temperature to within 1.5°C, an ambitious goal for China, still facilitated the overwintering of E. crassipes. With climate warming, the plant can overwinter successfully, which possibly assists it in producing and spreading new ramets in the vernal flood season. The new rooting behavior induced by ambient low temperature may be viewed as a unique growth adaptation strategy for a niche change, as it helps these plants invade empty niches left by dead free-floating plants on the water surface following winter freezes. With continued global warming, the distribution of the plant may expand northward, and eradication of the plant during the winter water drawdown period may be a more effective strategy.

4.
Sci Total Environ ; 850: 157847, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932860

RESUMEN

The re-establishment of submerged macrophytes facilitates the formation of a clear-water state in shallow eutrophic lakes. But most restorations of submerged macrophytes are often unstable and cannot maintain a stable clear-water state, probably because the species and functional diversity have not been fully taken into account. In this study, we try to explore submerged macrophyte communities and water quality changes under different submerged macrophyte combinations through mesocosm experiments. We hypothesized that communities with high species and functional diversity would be more conducive to improving water quality. The results showed that the mean community biomass of single-species and 8-species were higher than 5-species. And the stability and mean relative growth rate of the 8-species community were higher than the 5-species community. With the same configuration of three functional groups, the 8-species community was more stable and had better water quality than the 5-species community. The path analysis revealed that different functional groups of submerged macrophytes play different roles. The erect and canopy-producing submerged macrophytes were conducive to reducing total suspended solids (TSS) concentrations in the water column during community construction. In contrast, bottom-dwelling submerged macrophytes were conducive to reducing total nitrogen, total phosphorus, and TSS concentrations during the stage of disturbances. Our results also suggested that canopy-producing groups may have a competitive advantage for light over bottom-dwelling species. Based on the above results and biodiversity insurance hypothesis, we conclude that the community consisting of multi-functional species-rich groups is conducive to building stable submerged macrophyte communities and obtaining a stable clear-water state. Our findings will improve water quality management and pollution control for eutrophic shallow lakes.


Asunto(s)
Lagos , Calidad del Agua , Biomasa , Nitrógeno/análisis , Fósforo/análisis
5.
Sci Total Environ ; 753: 141998, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32889318

RESUMEN

Recovery of submerged macrophytes has been considered a key factor in the restoration of shallow eutrophic lakes. However, in some subtropical restored lakes, small omnivorous fish dominate the fish assemblages and feed in part on submerged macrophytes. Knowledge of the effects of small omnivores on the growth of submerged macrophytes is scarce and their responses are potentially species-specific, i.e. the growth of some species may be hampered by fish grazing while growth of others may be promoted by the nutrients becoming available by fish excretion. We conducted mesocosm experiments to examine the effects of the small omnivorous bitterling Acheilognathus macropterus, a common species in restored subtropical lakes in China, on nutrient concentrations and the growth of four species of submerged macrophytes (Hydrilla verticillata, Vallisneria denseserrulata, Ceratophyllum demersum and Myriophyllum spicatum). We found that the bitterling significantly increased nutrient concentrations via excretion and thereby enhanced the net growth of the less grazed nuisance macrophyte M. spicatum. In contrast, the net growth of C. demersum was reduced by the bitterling, most likely due to grazing as indicated by gut content analyses. Dominance by bitterling may, therefore, pose a threat to the long-term success of lake restoration by provoking a shift in the submerged macrophyte community towards nuisance species through selective grazing. Nutrient excretion may potentially also stimulate the growth of phytoplankton and periphyton, hampering the growth of submerged macrophyte.


Asunto(s)
Hydrocharitaceae , Animales , China , Lagos , Fitoplancton , Especificidad de la Especie
6.
Front Plant Sci ; 11: 513788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281835

RESUMEN

Located downstream of the Yangtze River Delta, the Lake Taihu drainage basin (LTDB) is one of the most developed areas in China. This area currently faces population and development issues, as well as many environmental problems, such as cultural eutrophication, algal blooms, and loss of native aquatic plants. Changes in aquatic biodiversity have received less attention than have changes in terrestrial habitats because relevant observations are lacking. In this study, information from 2010, 2014, and 2018 concerning the transformation of the aquatic plant biodiversity was obtained. The results showed that the dominant aquatic plants have changed from native plants to invasive plants. Aquatic plant biodiversity showed a decreasing trend, which may reduce the freshwater ecosystem function, and anthropogenic activities accounted for these changes. How to prevent the decline in aquatic plants and control the invasion of introduced aquatic plants should be a priority in the management of aquatic plants in the LTDB.

7.
Environ Sci Pollut Res Int ; 27(19): 23862-23870, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32301086

RESUMEN

Small omnivorous fish often dominate in subtropical shallow lakes, and they may affect the community structure of aquatic organisms on at least two trophic levels. However, in the study of aquatic food webs in subtropical lakes, most ecologists have focused on the effects of large-sized omnivorous species (e.g. common carp), studies of small-sized species being scarce. We conducted a mesocosm experiment with two treatments (fish presence and absence) to examine the effects of a small-sized omnivore, bitterling (Acheilognathus macropterus), on phytoplankton, zooplankton and benthic macroinvertebrates. Our results showed that bitterling presence significantly increased the chlorophyll a concentration and biomass of phytoplankton, which became dominated by cyanobacteria (mainly Aphanizomenon spp.) that accounted for >99% of both total phytoplankton abundance and biomass. Both the abundance and biomass of zooplankton were also higher in the fish-present treatment, but small rotifers became dominant, and the zooplankton:phytoplankton biomass ratio decreased, indicating less grazing on phytoplankton. Moreover, both the abundance and biomass of benthic macroinvertebrates (tubificids) were higher in the bitterling-present treatment than in the controls, which is opposite to the situation found when omni-benthivorous fish (e.g. crucian carp) dominate. Higher biomass of tubificids may, in turn, result in higher sediment nutrient release. Our study suggests that A. macropterus, and maybe also other bitterling species, can alter both pelagic and benthic assemblages via both top-down and bottom-up control effects and lead to more turbid water in eutrophic lakes. Thus, more attention should be paid to these small omnivorous species in the restoration and management of shallow subtropical lakes.


Asunto(s)
Clorofila A , Cianobacterias , Animales , Biomasa , Lagos , Fitoplancton , Zooplancton
8.
Sci Total Environ ; 705: 135958, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31838421

RESUMEN

Increased nutrient loading has adverse effects on the growth of submerged macrophytes in eutrophic shallow lakes. Where growth of phytoplankton, epiphyton and filamentous algae is excessive, all may contribute to shading that limits macrophyte growth. However, when abundant, herbivorous snails may dampen this effect by reducing the biomass of epiphyton, and perhaps also of nuisance filamentous algae, both which have the potential to become more abundant in a future warmer world. We studied the effects of herbivorous snails (Radix swinhoei) on the biomass of phytoplankton, epiphyton and filamentous algae as well as the growth of the submerged macrophyte, Vallisneria denseserrulata, under contrasting nutrient loadings (low, nitrogen (N) 113 µg L-1·d-1 and phosphorus (P) 10 µg L-1·d-1; high, N 339 µg L-1·d-1 and P 30 µg L-1·d-1) in a 30 day outdoor mesocosm experiment, conducted on the shore of subtropical Lake Taihu, China. We found significant interactive effects of nutrient loading and snail presence on biomasses of epiphyton and filamentous algae and on the biomass and relative growth rate of submerged macrophytes. When snails were absent, the biomass of epiphyton and the biomass and coverage of filamentous algae all increased markedly, while the biomass, density and relative growth rate of V. denseserrulata decreased significantly with increased nutrient loading. When snails were present, biomasses of epiphyton, phytoplankton and filamentous algae were significantly reduced and growth of V. denseserrulata significantly increased under both high and low nutrient loading scenarios, and the effect was most pronounced in the nutrient-rich treatment. The present study suggests that in shallow aquatic ecosystems, herbivorous snails reduce the negative impact of nutrient loading on submerged macrophyte growth, by controlling both epiphyton and nuisance filamentous algae. How best to protect snails from fish predation in order to realize this potential under natural conditions is a matter that warrants further studies.


Asunto(s)
Ecosistema , Lagos , Animales , Biomasa , China , Eutrofización , Nitrógeno , Fósforo , Fitoplancton
9.
J Integr Plant Biol ; 51(3): 308-15, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19261074

RESUMEN

Aquatic plants develop strong fragment propagation and colonization ability to endure the natural disturbances. However, detailed research of ability to endure the natural disturbances has been lacking to date. Therefore, reproduction (shoot) and colonization (root) of shoot fragments of Potamogeton crispus L. with or without apices were investigated for the effect of apical dominance, and the growth of decapitated shoot fragments at three lengths (2, 4, 6 cm) was compared. Meanwhile, fragment propagation at levels of bud position was studied for bud position effect after escaping from apical dominance. The results showed significant increases occurred in the outgrowth of lateral branches on fragments decapitated compared with the fragments with apices, implying that apical dominance exists. Different lengths of fragments showed little difference in biomass allocations, but significant differences were noted in their propagation. Meanwhile, the effect of bud position was verified, due to the significant difference of average reproduction per node among the three length groups. Thus, the present study has made progress in the current understanding of aquatic plant dispersion among natural systems and contributes to improve methods of in vitro propagation for re-implantation purposes.


Asunto(s)
Adaptación Fisiológica , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Potamogetonaceae/crecimiento & desarrollo , Potamogetonaceae/fisiología , Agua , Agricultura , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
10.
Ambio ; 36(4): 335-42, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17626472

RESUMEN

Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% costal wetlands) because of the wetland reclamation during China's long history of civilization, and the population pressure and the misguided policies over the last 50 years. Recently, with an improved understanding that healthy wetland ecosystems play a vital role in her sustainable economic development, China started major efforts in wetland conservation, as signified by the policy to return reclaimed croplands to wetlands, the funding of billions of dollars to restore degraded wetlands, and the national plan to place 90% of natural wetlands under protection by 2030. This paper describes the current status of the natural wetlands in China, reviews past problems, and discusses current efforts and future challenges in protecting China's natural wetlands.


Asunto(s)
Conservación de los Recursos Naturales/historia , Humedales , China , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/tendencias , Ecosistema , Monitoreo del Ambiente/historia , Monitoreo del Ambiente/métodos , Predicción , Geografía , Historia del Siglo XX , Historia del Siglo XXI , Contaminación del Agua/análisis , Contaminación del Agua/prevención & control
12.
J Zhejiang Univ Sci ; 5(6): 656-62, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15101098

RESUMEN

The endangered medicinal herb, Changium smyrnioides can only be found in deciduous forest gaps within the middle to northern subtropical broad-leaved evergreen forest zone of China. The considerable plasticity of its shoot and root structure helps it to capture light more effectively in winter and early spring, and to adapt to the soil moisture conditions in its narrow habitat. Another medicinal plant, Anthriscus sylvestris, is of similar economic importance but commonly dis-tributed widely. In contrast to C. smyrnioides, it has low structural plasticity. It is also specialized to adapt to the moist and sunny environment, where habitat, such as the banks of creeks and rivers, is abundant.


Asunto(s)
Apiaceae/anatomía & histología , Apiaceae/crecimiento & desarrollo , Adaptación Fisiológica/fisiología , Biomasa , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...