Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4621, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941159

RESUMEN

Pancreatic ß-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise ß-cell identity is unknown. We show here under reversible, chronic stress conditions ß-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of ß-cell function and identity. Upon recovery from stress, ß-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while ß-cells show resilience to episodic ER stress, when episodes exceed a threshold, ß-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest ß-cell adaptive exhaustion contributes to diabetes pathogenesis.


Asunto(s)
Plasticidad de la Célula , Células Secretoras de Insulina , Adaptación Fisiológica , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
2.
PLoS One ; 17(8): e0271695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947624

RESUMEN

Endoplasmic Reticulum (ER) stress, caused by the accumulation of misfolded proteins in the ER, elicits a homeostatic mechanism known as the Unfolded Protein Response (UPR). The UPR reprograms gene expression to promote adaptation to chronic ER stress. The UPR comprises an acute phase involving inhibition of bulk protein synthesis and a chronic phase of transcriptional induction coupled with the partial recovery of protein synthesis. However, the role of transcriptional regulation in the acute phase of the UPR is not well understood. Here we analyzed the fate of newly synthesized mRNA encoding the protective and homeostatic transcription factor X-box binding protein 1 (XBP1) during this acute phase. We have previously shown that global translational repression induced by the acute UPR was characterized by decreased translation and increased stability of XBP1 mRNA. We demonstrate here that this stabilization is independent of new transcription. In contrast, we show XBP1 mRNA newly synthesized during the acute phase accumulates with long poly(A) tails and escapes translational repression. Inhibition of newly synthesized RNA polyadenylation during the acute phase decreased cell survival with no effect in unstressed cells. Furthermore, during the chronic phase of the UPR, levels of XBP1 mRNA with long poly(A) tails decreased in a manner consistent with co-translational deadenylation. Finally, additional pro-survival, transcriptionally-induced mRNAs show similar regulation, supporting the broad significance of the pre-steady state UPR in translational control during ER stress. We conclude that the biphasic regulation of poly(A) tail length during the UPR represents a previously unrecognized pro-survival mechanism of mammalian gene regulation.


Asunto(s)
Retículo Endoplásmico , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Mamíferos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
3.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858571

RESUMEN

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Asunto(s)
Sistema de Transporte de Aminoácidos A , Aminoácidos , Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/metabolismo
4.
FASEB J ; 35(11): e21990, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34665898

RESUMEN

Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.


Asunto(s)
Metabolismo de los Lípidos , Longevidad , Síndrome Metabólico/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales
5.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686314

RESUMEN

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Asunto(s)
Proliferación Celular , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Presión Osmótica , Biosíntesis de Proteínas , Ribosomas/metabolismo , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Animales , Codón Iniciador , Fibroblastos/patología , Células HEK293 , Humanos , Cinética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ribosomas/genética , Transducción de Señal
6.
FEBS J ; 288(22): 6365-6391, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33387379

RESUMEN

Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.


Asunto(s)
Inflamación/metabolismo , Proteínas de Unión al ARN/metabolismo , eIF-2 Quinasa/metabolismo , Humanos , Transducción de Señal
7.
Mol Cell Endocrinol ; 521: 111109, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33285243

RESUMEN

PPARγ deficiency in humans and model organisms impairs the transcriptional control of adipogenesis and mature adipocyte function resulting in lipodystrophy and insulin resistance. Zinc finger protein 407 (ZFP407) positively regulates PPARγ target gene expression and insulin-stimulated glucose uptake in cultured adipocytes. The in vivo physiological role of ZFP407 in mature adipocytes, however, remains to be elucidated. Here we generated adipocyte-specific ZFP407 knockout (AZKO) mice and discovered a partial lipodystrophic phenotype with reduced fat mass, hypertrophic adipocytes in inguinal and brown adipose tissue, and reduced adipogenic gene expression. The lipodystrophy was further exacerbated in AZKO mice fed a high-fat diet. Glucose and insulin tolerance tests revealed decreased insulin sensitivity in AZKO mice compared to control littermates. Cell-based assays demonstrated that ZFP407 is also required for adipogenesis, which may also contribute to the lipodystrophic phenotype. These results demonstrate an essential in vivo role of ZFP407 in brown and white adipose tissue formation and organismal insulin sensitivity.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/genética , Resistencia a la Insulina/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Células 3T3 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Desarrollo Embrionario/genética , Femenino , Regulación de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño
8.
Nat Commun ; 11(1): 2498, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427827

RESUMEN

Plasticity of neoplasia, whereby cancer cells attain stem-cell-like properties, is required for disease progression and represents a major therapeutic challenge. We report that in breast cancer cells NANOG, SNAIL and NODAL transcripts manifest multiple isoforms characterized by different 5' Untranslated Regions (5'UTRs), whereby translation of a subset of these isoforms is stimulated under hypoxia. The accumulation of the corresponding proteins induces plasticity and "fate-switching" toward stem cell-like phenotypes. Mechanistically, we observe that mTOR inhibitors and chemotherapeutics induce translational activation of a subset of NANOG, SNAIL and NODAL mRNA isoforms akin to hypoxia, engendering stem-cell-like phenotypes. These effects are overcome with drugs that antagonize translational reprogramming caused by eIF2α phosphorylation (e.g. ISRIB), suggesting that the Integrated Stress Response drives breast cancer plasticity. Collectively, our findings reveal a mechanism of induction of plasticity of breast cancer cells and provide a molecular basis for therapeutic strategies aimed at overcoming drug resistance and abrogating metastasis.


Asunto(s)
Regiones no Traducidas 5'/genética , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Isoformas de ARN/genética , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Hipoxia de la Célula , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteína Homeótica Nanog/genética , Proteína Nodal/genética , Fosforilación/efectos de los fármacos , Factores de Transcripción de la Familia Snail/genética
9.
Elife ; 92020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32175843

RESUMEN

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Asunto(s)
Proteínas Portadoras/metabolismo , Presión Osmótica , Proteínas de Unión al ARN/metabolismo , eIF-2 Quinasa/metabolismo , Adaptación Fisiológica , Animales , Proteínas Portadoras/genética , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Transducción de Señal , eIF-2 Quinasa/genética
10.
Cell Death Dis ; 10(11): 845, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699971

RESUMEN

Tumor protein 53 (p53, encoded by the TP53 gene) is a key tumor suppressor regulating cell fates in response to internal and external stresses. As TP53 is mutated or silenced in a majority of tumors, reactivation of p53 by small molecules represents a promising strategy in cancer therapeutics. One such agent is RITA (reactivation of p53 and induction of tumor cell apoptosis), which restores p53 expression in cells with hyperactive HDM2 and induces apoptosis. Yet, mechanisms underlying the anticancer activity of RITA are incompletely understood. Here we show that RITA suppresses mRNA translation independently of p53 by inducing eIF2α phosphorylation. Surprisingly, reactivation of p53 following RITA treatment is critically dependent on eIF2α phosphorylation. Moreover, inhibition of eIF2α phosphorylation attenuates pro-apoptotic and anti-neoplastic effects of RITA, while inducing phosphorylation of eIF2α enhances the anticancer activity of RITA. Collectively, these findings demonstrate that the translational machinery plays a major role in determining the antineoplastic activity of RITA, and suggest that combining p53 activators and translation modulators may be beneficial.


Asunto(s)
Neoplasias de la Mama/prevención & control , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Factor 2 Eucariótico de Iniciación/genética , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Fosforilación , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , eIF-2 Quinasa/metabolismo
11.
Cell Rep ; 21(10): 2895-2910, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212034

RESUMEN

GADD34, a stress-induced regulatory subunit of the phosphatase PP1, is known to function in hyperosmotic stress through its well-known role in the integrated stress response (ISR) pathway. Adaptation to hyperosmotic stress is important for the health of corneal epithelial cells exposed to changes in extracellular osmolarity, with maladaptation leading to dry eye syndrome. This adaptation includes induction of SNAT2, an endoplasmic reticulum (ER)-Golgi-processed protein, which helps to reverse the stress-induced loss of cell volume and promote homeostasis through amino acid uptake. Here, we show that GADD34 promotes the processing of proteins synthesized on the ER during hyperosmotic stress independent of its action in the ISR. We show that GADD34/PP1 phosphatase activity reverses hyperosmotic-stress-induced Golgi fragmentation and is important for cis- to trans-Golgi trafficking of SNAT2, thereby promoting SNAT2 plasma membrane localization and function. These results suggest that GADD34 is a protective molecule for ocular diseases such as dry eye syndrome.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Proteína Fosfatasa 1/metabolismo , Sistema de Transporte de Aminoácidos A/genética , Aminoácidos/metabolismo , Western Blotting , Humanos , Ósmosis/fisiología , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220654

RESUMEN

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 3 de Iniciación Eucariótica/metabolismo , Fibroblastos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Transcripción Genética , eIF-2 Quinasa/metabolismo , Animales , Reprogramación Celular , Factor 3 de Iniciación Eucariótica/genética , Fibroblastos/patología , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Fenotipo , Proteostasis , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Factores de Tiempo , Transfección , eIF-2 Quinasa/genética
13.
J Biol Chem ; 292(35): 14544-14555, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684424

RESUMEN

Macrophages use various cell-surface receptors to sense their environment and undergo polarized responses. The cytokines, interleukin (IL)-4 and IL-13, released from T-helper type 2 (Th2) cells, drive macrophage polarization toward an alternatively activated phenotype (M2). This phenotype is associated with the expression of potent pro-resolving mediators, such as the prostaglandin (PG) D2-derived cyclopentenone metabolite, 15d-PGJ2, produced by the cyclooxygenase (Ptgs; Cox) pathway. Interestingly, IL-4 treatment of bone marrow-derived macrophages (BMDMs) significantly down-regulates Cox-2 protein expression, whereas Cox-1 levels are significantly increased. This phenomenon not only challenges the dogma that Cox-1 is only developmentally regulated, but also demonstrates a novel mechanism in which IL-4-dependent regulation of Cox-1 involves the activation of the mechanistic target of rapamycin complex (mTORC). Using specific chemical inhibitors, we demonstrate here that IL-4-dependent Cox-1 up-regulation occurs at the post-transcriptional level via the Fes-Akt-mTORC axis. Activation of AMP-activated protein kinase (AMPK) by metformin, inhibition of mTORC by torin 1, or CRISPR/Cas9-mediated genetic knock-out of tuberous sclerosis complex-2 (Tsc2) blocked the IL-4-dependent expression of Cox-1 and the ability of macrophages to polarize to M2. However, use of 15d-PGJ2 partially rescued the effects of AMPK activation, suggesting the importance of Cox-1 in macrophage polarization as also observed in a model of gastrointestinal helminth clearance. In summary, these findings suggest a new paradigm where IL-4-dependent up-regulation of Cox-1 expression may play a key role in tissue homeostasis and wound healing during Th2-mediated immune responses, such as parasitic infections.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Interleucina-4/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Proteínas de la Membrana/agonistas , Modelos Inmunológicos , Proteínas Quinasas Activadas por AMP/química , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células Cultivadas , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Activación Enzimática/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Inmunomodulación/efectos de los fármacos , Interleucina-4/genética , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones Endogámicos C57BL , Nippostrongylus/efectos de los fármacos , Nippostrongylus/crecimiento & desarrollo , Nippostrongylus/inmunología , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/uso terapéutico , Proteínas Recombinantes/metabolismo , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/patología , Infecciones por Strongylida/prevención & control
14.
Mol Cell Biol ; 37(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27920257

RESUMEN

High extracellular osmolarity results in a switch from an adaptive to an inflammatory gene expression program. We show that hyperosmotic stress activates the protein kinase R (PKR) independently of its RNA-binding domain. In turn, PKR stimulates nuclear accumulation of nuclear factor κB (NF-κB) p65 species phosphorylated at serine-536, which is paralleled by the induction of a subset of inflammatory NF-κB p65-responsive genes, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and IL-1ß. The PKR-mediated hyperinduction of iNOS decreases cell survival in mouse embryonic fibroblasts via mechanisms involving nitric oxide (NO) synthesis and posttranslational modification of proteins. Moreover, we demonstrate that the PKR inhibitor C16 ameliorates both iNOS amplification and disease-induced phenotypic breakdown of the intestinal epithelial barrier caused by an increase in extracellular osmolarity induced by dextran sodium sulfate (DSS) in vivo Collectively, these findings indicate that PKR activation is an essential part of the molecular switch from adaptation to inflammation in response to hyperosmotic stress.


Asunto(s)
Inflamación/enzimología , Inflamación/patología , Presión Osmótica , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Colitis/metabolismo , Colitis/patología , Enterocitos/metabolismo , Activación Enzimática , Inflamación/genética , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitrosación , Fenotipo , Fosforilación , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción ReIA/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores
15.
Cell Death Dis ; 7(11): e2485, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882946

RESUMEN

Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.


Asunto(s)
Cadherinas/genética , Cinamatos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Ciliadas Auditivas/patología , Pérdida Auditiva/patología , Tiourea/análogos & derivados , Animales , Regulación hacia Abajo/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Proteínas de Choque Térmico , Ratones Mutantes , Mutación/genética , Fosforilación/efectos de los fármacos , Tiourea/farmacología , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo
16.
Cell Cycle ; 15(22): 3115-3120, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27686860

RESUMEN

Eukaryotic initiation factor 2A (eIF2A) is a 65-kDa protein that was first identified in the early 1970s as a factor capable of stimulating initiator methionyl-tRNAi (Met-tRNAMeti) binding to 40S ribosomal subunits in vitro. However, in contrast to the eIF2, which stimulates Met-tRNAMeti binding to 40S ribosomal subunits in a GTP-dependent manner, eIF2A didn't reveal any GTP-dependence, but instead was found to direct binding of the Met-tRNAMeti to 40S ribosomal subunits in a codon-dependent manner. eIF2A appears to be highly conserved across eukaryotic species, suggesting conservation of function in evolution. The yeast Saccharomyces cerevisae eIF2A null mutant revealed no apparent phenotype, however, it was found that in yeast eIF2A functions as a suppressor of internal ribosome entry site (IRES)-mediated translation. It was thus suggested that eIF2A my act by impinging on the expression of specific mRNAs. Subsequent studies in mammalian cell systems implicated eIF2A in non-canonical (non-AUG-dependent) translation initiation events involving near cognate UUG and CUG codons. Yet, the role of eIF2A in cellular functions remains largely enigmatic. As a first step toward characterization of the eIF2A function in mammalian systems in vivo, we have obtained homozygous eIF2A-total knockout (KO) mice, in which a gene trap cassette was inserted between eIF2A exons 1 and 2 disrupting expression of all exons downstream of the insertion. The KO mice strain is viable and to date displays no apparent phenotype. We believe that the eIF2A KO mice strain will serve as a valuable tool for researchers studying non-canonical initiation of translation in vivo.


Asunto(s)
Factor 2 Eucariótico de Iniciación/deficiencia , Animales , Secuencia de Bases , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados
17.
J Hepatol ; 65(5): 929-937, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27318325

RESUMEN

BACKGROUND & AIMS: Increased skeletal muscle ammonia uptake with loss of muscle mass adversely affects clinical outcomes in cirrhosis. Hyperammonemia causes reduced protein synthesis and sarcopenia but the cellular responses to impaired proteostasis and molecular mechanism of l-leucine induced adaptation to ammonia induced stress were determined. METHODS: Response to activation of amino acid deficiency sensor, GCN2, in the skeletal muscle from cirrhotic patients and the portacaval anastomosis (PCA) rat were quantified. During hyperammonemia and l-leucine supplementation, protein synthesis, phosphorylation of eIF2α, mTORC1 signaling, l-leucine transport and response to l-leucine supplementation were quantified. Adaptation to cellular stress via ATF4 and its target GADD34 were also determined. RESULTS: Activation of the eIF2α kinase GCN2 and impaired mTORC1 signaling were observed in skeletal muscle from cirrhotic patients and PCA rats. Ammonia activated GCN2 mediated eIF2α phosphorylation (eIF2α-P) and impaired mTORC1 signaling that inhibit protein synthesis in myotubes and MEFs. Adaptation to ammonia induced stress did not involve translational reprogramming by activation transcription factor 4 (ATF4) dependent induction of the eIF2α-P phosphatase subunit GADD34. Instead, ammonia increased expression of the leucine/glutamine exchanger SLC7A5, l-leucine uptake and intracellular l-leucine levels, the latter not being sufficient to rescue the inhibition of protein synthesis, due to potentially enhanced mitochondrial sequestration of l-leucine. l-leucine supplementation rescued protein synthesis inhibition caused by hyperammonemia. CONCLUSIONS: Response to hyperammonemia is reminiscent of the cellular response to amino acid starvation, but lacks the adaptive ATF4 dependent integrated stress response (ISR). Instead, hyperammonemia-induced l-leucine uptake was an adaptive response to the GCN2-mediated decreased protein synthesis. LAY SUMMARY: Sarcopenia or skeletal muscle loss is the most frequent complication in cirrhosis but there are no treatments because the cause(s) of muscle loss in liver disease are not known. Results from laboratory experiments in animals and muscle cells were validated in human patients with cirrhosis to show that ammonia plays a key role in causing muscle loss in patients with cirrhosis. We identified a novel stress response to ammonia in the muscle that decreases muscle protein content that can be reversed by supplementation with the amino acid l-leucine.


Asunto(s)
Hiperamonemia , Animales , Humanos , Leucina , Cirrosis Hepática , Músculo Esquelético , Fosforilación , Ratas , Sarcopenia
18.
Nat Commun ; 7: 11971, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27321283

RESUMEN

Cancer cells often require glutamine for growth, thereby distinguishing them from most normal cells. Here we show that PIK3CA mutations reprogram glutamine metabolism by upregulating glutamate pyruvate transaminase 2 (GPT2) in colorectal cancer (CRC) cells, making them more dependent on glutamine. Compared with isogenic wild-type (WT) cells, PIK3CA mutant CRCs convert substantially more glutamine to α-ketoglutarate to replenish the tricarboxylic acid cycle and generate ATP. Mutant p110α upregulates GPT2 gene expression through an AKT-independent, PDK1-RSK2-ATF4 signalling axis. Moreover, aminooxyacetate, which inhibits the enzymatic activity of aminotransferases including GPT2, suppresses xenograft tumour growth of CRCs with PIK3CA mutations, but not with WT PIK3CA. Together, these data establish oncogenic PIK3CA mutations as a cause of glutamine dependency in CRCs and suggest that targeting glutamine metabolism may be an effective approach to treat CRC patients harbouring PIK3CA mutations.


Asunto(s)
Adenocarcinoma/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Mutación , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/biosíntesis , Ácido Aminooxiacético/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/farmacología , Femenino , Glutamina/antagonistas & inhibidores , Células HCT116 , Células HT29 , Humanos , Ácidos Cetoglutáricos/antagonistas & inhibidores , Ácidos Cetoglutáricos/metabolismo , Ratones , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal , Transaminasas/genética , Transaminasas/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Elife ; 4: e10067, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26595448

RESUMEN

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic ß cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic ß cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.


Asunto(s)
Cisteína/metabolismo , Regulación de la Expresión Génica , Sulfuro de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Animales , Biología Computacional , Ratones Endogámicos C57BL , Proteoma/análisis
20.
ACS Chem Biol ; 10(9): 2135-48, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26168288

RESUMEN

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 µM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)ß2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and ß2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that verapamil treatment enhances the calnexin-assisted forward trafficking and subunit assembly, which leads to substantially enhanced functional surface expression of the mutant receptors. Since verapamil is an FDA-approved drug that crosses blood-brain barrier and has been used as an additional medication for some epilepsies, our findings suggest that verapamil holds great promise to be developed to ameliorate IGE resulting from α1(D219N) subunit trafficking deficiency.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Transporte de Proteínas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Verapamilo/farmacología , Calnexina/metabolismo , Calreticulina/metabolismo , Línea Celular , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...