Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(26): 11342-11351, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38875720

RESUMEN

Municipal solid waste (MSW) management systems play a crucial role in greenhouse gas (GHG) emissions in China. Although the government has implemented many policies to improve the MSW management system, the impact of these improvements on city-level GHG emission reduction remains largely unexplored. This study conducted a comprehensive analysis of both direct and downstream GHG emissions from the MSW sector, encompassing sanitary landfill, dump, incineration, and biological treatment, across 352 Chinese cities from 2001 to 2021 by adopting inventory methods recommended by the Intergovernmental Panel on Climate Change (IPCC). The results reveal that (1) GHG emissions from the MSW sector in China peaked at 70.6 Tg of CO2 equiv in 2018, followed by a significant decline to 47.6 Tg of CO2 equiv in 2021, (2) cities with the highest GHG emission reduction benefits in the MSW sector were historical emission hotspots over the past 2 decades, and (3) with the potential achievement of zero-landfilling policy by 2030, an additional reduction of 203.7 Tg of CO2 equiv is projected, with the emission reduction focus toward cities in South China (21.9%), Northeast China (17.8%), and Southwest China (17.3%). This study highlights that, even without explicit emission reduction targets for the MSW sector, the improvements of this sector have significantly reduced GHG emissions in China.


Asunto(s)
Gases de Efecto Invernadero , Residuos Sólidos , China , Ciudades , Eliminación de Residuos , Dióxido de Carbono/análisis
2.
Sci Data ; 11(1): 640, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886401

RESUMEN

The 2015 Paris Agreement has set out the climate change target of limiting global warming to 1.5 °C, which poses a serious challenge to countries to reduce emissions. As the world's largest carbon emitter, promoting the realization of the "dual-carbon" goal is the key to realizing China's green transformation and high-quality development. Chinese asset managers play active roles in the capital market as an important channel of asset allocation. Currently, the vast majority of Chinese asset managers hold high percentages of high-carbon industries in their portfolios, and lack quantitative data of their carbon footprints embodied in equity investments, which faces huge carbon-related risks. Therefore, it's an urgent need to comprehensively and scientifically measure financed emissions of Chinese asset managers, which is of great significance for asset managers' carbon risk management and sustainable investment. This paper develops a detailed inventory of carbon emissions for equity portfolios managed by Chinese asset managers from 2010 to 2020, which stands as a pivotal reference for in-depth analysis of emission characteristics.

3.
Sci Data ; 11(1): 449, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702307

RESUMEN

In the context of China's freshwater crisis high-resolution data are critical for sustainable water management and economic growth. Yet there is a dearth of data on water withdrawal and scarcity regardless of whether total or subsector amount, for prefectural cities. In administrative and territorial scope, we accounted for water withdrawal of all 63 economic-socio-environmental sectors for all 343 prefectural cities in China, based on a general framework and 2015 data. Spatial and economic-sector resolution is improved compared with previous studies by partitioning general sectors into industrial and agricultural sub-sectors. Construction of these datasets was based on selection of 16 driving forces. We connected a size indicator with corresponding water-withdrawal efficiency. We further accounted for total blue-water withdrawal and quantitative water scarcity status. Then we compared different scopes and methods of official accounts and statistics from various water datasets. These disaggregated and complete data could be used in input-output models for municipal design and governmental planning to help gain in-depth insights into subsector water-saving priorities from local economic activities.

4.
Nature ; 627(8005): 797-804, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480894

RESUMEN

Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input-output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)-0.05 ± 0.03 (SSP 585) percentage points during 2030-2040 to 0.05 ± 0.01-0.15 ± 0.04 percentage points during 2050-2060. By 2060, the expected global economic losses reach a total of 0.6-4.6% with losses attributed to health loss (37-45%), labour productivity loss (18-37%) and indirect loss (12-43%) under different shared socioeconomic pathways. Small- and medium-sized developing countries suffer disproportionately from higher health loss in South-Central Africa (2.1 to 4.0 times above global average) and labour productivity loss in West Africa and Southeast Asia (2.0-3.3 times above global average). The supply-chain disruption effects are much more widespread with strong hit to those manufacturing-heavy countries such as China and the USA, leading to soaring economic losses of 2.7 ± 0.7% and 1.8 ± 0.5%, respectively.

5.
Sci Total Environ ; 924: 171508, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38460682

RESUMEN

Fast fashion is driving the continued growth of the fashion industry's carbon emissions. Understanding how fast fashion consumption exacerbates carbon emissions is critical to guide mitigation strategies for the fashion industry. Taking jeans, a typical fast fashion product as an example, this study developed an LCA model to assess the carbon footprint of fast fashion consumption at global and national levels, and mitigation potentials of product service systems-related scenarios were then explored. Results show that the carbon footprint of fast fashion consumption is 2.50 kgCO2e/one wear jeans, 11 times higher than that of traditional fashion consumption. Jeans production and cross-broad transportation contributed 91 % of the carbon footprint of fast fashion consumption. Developed countries have a 53 % higher per capita carbon footprint of fast fashion consumption than developing countries. The second-hand trading model has the highest mitigation potential, reducing carbon emissions by 90 %. This study proposed an analytical framework for the carbon footprint of fast fashion consumption, which provides the basis for the environmental footprints of fast fashion products. Our findings provide insights into the carbon footprints of traditional and fast fashion consumption and strategies for the transition to circular fashion.

6.
Nat Food ; 5(2): 116-124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332359

RESUMEN

Understanding the impacts of diets on health and the environment, as well as their association with socio-economic development, is key to operationalize and monitor food systems shifts. Here we propose a health-environment efficiency indicator defined as a ratio of health benefits and four key food-related environmental impacts (greenhouse gas emissions, scarcity-weighted water withdrawal, acidifying and eutrophying emissions) to assess how diets have performed in supporting healthy lives in relation to environmental pollution and resource consumption across 195 countries from 1990 to 2011. We find that the health-environment efficiency of each environmental input follows a nonlinear path along the Socio-Demographic Index gradient representing different development levels. Health-environment efficiency first increases thanks to the elimination of child and maternal malnutrition through greater food supply, then decreases driven by additional environmental impacts from a shift to animal products, and finally shows a slow growth in some developed countries again as they shift towards healthier diets.


Asunto(s)
Dieta , Ambiente , Niño , Humanos , Dieta Saludable , Alimentos , Contaminación Ambiental
7.
Risk Anal ; 44(1): 155-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37105758

RESUMEN

This article investigates the economic impacts of a multi-disaster mix comprising extreme weather, such as flooding, pandemic control, and export restrictions, dubbed a "perfect storm." We develop a compound-hazard impact model that improves on the ARIO model by considering the economic interplay between different types of hazardous events. The model considers simultaneously cross-regional substitution and production specialization, which can influence the resilience of the economy to multiple shocks. We build scenarios to investigate economic impacts when a flood and a pandemic lockdown collide and how these are affected by the timing, duration, and intensity/strictness of each shock. In addition, we examine how export restrictions during a pandemic impact the economic losses and recovery, especially when there is the specialization of production of key sectors. The results suggest that an immediate, stricter but shorter pandemic control policy would help to reduce the economic costs inflicted by a perfect storm, and regional or global cooperation is needed to address the spillover effects of such compound events, especially in the context of the risks from deglobalization.


Asunto(s)
Desastres , Clima Extremo , Pandemias , Inundaciones , Políticas
8.
Environ Sci Technol ; 57(50): 21295-21305, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064660

RESUMEN

The chemical industry is a significant source of nonmethane volatile organic compounds (NMVOCs), pivotal precursors to ambient ozone (O3), and secondary organic aerosol (SOA). Despite their importance, precise estimation of these emissions remains challenging, impeding the implementation of NMVOC controls. Here, we present the first comprehensive plant-level assessment of NMVOC emissions from the chemical industry in China, encompassing 3461 plants, 127 products, and 50 NMVOC compounds from 2010 to 2019. Our findings revealed that the chemical industry in China emitted a total of 3105 (interquartile range: 1179-8113) Gg of NMVOCs in 2019, with a few specific products accounting for the majority of the emissions. Generally, plants engaged in chemical fibers production or situated in eastern China pose a greater risk to public health due to their higher formation potentials of O3 and SOA or their proximity to residential areas or both. We demonstrated that targeting these high-risk plants for emission reduction could enhance health benefits by 7-37% per unit of emission reduction on average compared to the current situation. Consequently, this study provides essential insights for developing effective plant-specific NMVOC control strategies within China's chemical industry.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Industria Química , Monitoreo del Ambiente , Ozono/análisis , China , Aerosoles/análisis , Plantas
9.
Nat Commun ; 14(1): 8213, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081830

RESUMEN

Achieving low-carbon development of the cement industry in the developing countries is fundamental to global emissions abatement, considering the local construction industry's rapid growth. However, there is currently a lack of systematic and accurate accounting and projection of cement emissions in developing countries, which are characterized with lower basic economic country condition. Here, we provide bottom-up quantifications of emissions from global cement production and reveal a regional shift in the main contributors to global cement CO2 emissions. The study further explores cement emissions over 2020-2050 that correspond to different housing and infrastructure conditions and emissions mitigation options for all developing countries except China. We find that cement emissions in developing countries except China will reach 1.4-3.8 Gt in 2050 (depending on different industrialization trajectories), compared to their annual emissions of 0.7 Gt in 2018. The optimal combination of low-carbon measures could contribute to reducing annual emissions by around 65% in 2050 and cumulative emissions by around 48% over 2020-2050. The efficient technological paths towards a low carbon future of cement industry vary among the countries and infrastructure scenarios. Our results are essential to understanding future emissions patterns of the cement industry in the developing countries and can inform policies in the cement sector that contribute to meeting the climate targets set out in the Paris Agreement.

11.
Environ Sci Technol ; 57(43): 16477-16488, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37867432

RESUMEN

The iron and steel industry (ISI) is important for socio-economic progress but emits greenhouse gases and air pollutants detrimental to climate and human health. Understanding its historical emission trends and drivers is crucial for future warming and pollution interventions. Here, we offer an exhaustive analysis of global ISI emissions over the past 60 years, forecasting up to 2050. We evaluate emissions of carbon dioxide and conventional and unconventional air pollutants, including heavy metals and polychlorinated dibenzodioxins and dibenzofurans. Based on this newly established inventory, we dissect the determinants of past emission trends and future trajectories. Results show varied trends for different pollutants. Specifically, PM2.5 emissions decreased consistently during the period 1970 to 2000, attributed to adoption of advanced production technologies. Conversely, NOx and SO2 began declining recently due to stringent controls in major contributors such as China, a trend expected to persist. Currently, end-of-pipe abatement technologies are key to PM2.5 reduction, whereas process modifications are central to CO2 mitigation. Projections suggest that by 2050, developing nations (excluding China) will contribute 52-54% of global ISI PM2.5 emissions, a rise from 29% in 2019. Long-term emission curtailment will necessitate the innovation and widespread adoption of new production and abatement technologies in emerging economies worldwide.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminación del Aire/análisis , Hierro , Material Particulado/análisis , Acero , Contaminantes Atmosféricos/análisis , China
12.
Nat Commun ; 14(1): 6342, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816741

RESUMEN

Emerging economies, low- and middle-income countries experiencing rapid population and GDP growth, face the challenge of improving their living standards while stabilizing CO2 emissions to meet net-zero goals. In this study, we quantify the CO2 emissions required for achieving decent living standards (DLS) in emerging economies. The results show that, compared to other regions, achieving DLS in emerging Asian and African economies will result in more additional CO2 emissions, particularly in the DLS indicators of Mobility and Electricity. Achievement of DLS in emerging economies will result in 8.6 Gt of additional CO2 emissions, which should not jeopardize global climate targets. However, a concerning trend arises as more than half of the emerging economies (62 out of 121) will face substantial challenges in aligning their expected emission growth for achieving DLS with their national emission mitigation targets.

14.
Nature ; 622(7983): 514-520, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731002

RESUMEN

The highly energy-intensive iron and steel industry contributed about 25% (ref. 1) of global industrial CO2 emissions in 2019 and is therefore critical for climate-change mitigation. Despite discussions of decarbonization potentials at national and global levels2-6, plant-specific mitigation potentials and technologically driven pathways remain unclear, which cumulatively determines the progress of net-zero transition of the global iron and steel sector. Here we develop a CO2 emissions inventory of 4,883 individual iron and steel plants along with their technical characteristics, including processing routes and operating details (status, age, operation-years etc.). We identify and match appropriate emission-removal or zero-emission technologies to specific possessing routes, or what we define thereafter as a techno-specific decarbonization road map for every plant. We find that 57% of global plants have 8-24 operational years, which is the retrofitting window for low-carbon technologies. Low-carbon retrofitting following the operational characteristics of plants is key for limiting warming to 2 °C, whereas advanced retrofitting may help limit warming to 1.5 °C. If each plant were retrofitted 5 years earlier than the planned retrofitting schedule, this could lead to cumulative global emissions reductions of 69.6 (±52%) gigatonnes (Gt) CO2 from 2020 to 2050, almost double that of global CO2 emissions in 2021. Our results provide a detailed picture of CO2 emission patterns associated with production processing of iron and steel plants, illustrating the decarbonization pathway to the net-zero-emissions target with the efforts from each plant.

16.
Sci Bull (Beijing) ; 68(20): 2456-2466, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37620230

RESUMEN

Chinese cities are core in the national carbon mitigation and largely affect global decarbonisation initiatives, yet disparities between cities challenge country-wide progress. Low-carbon transition should preferably lead to a convergence of both equity and mitigation targets among cities. Inter-city supply chains that link the production and consumption of cities are a factor in shaping inequality and mitigation but less considered aggregately. Here, we modelled supply chains of 309 Chinese cities for 2012 to quantify carbon footprint inequality, as well as explored a leverage opportunity to achieve an inclusive low-carbon transition. We revealed significant carbon inequalities: the 10 richest cities in China have per capita carbon footprints comparable to the US level, while half of the Chinese cities sit below the global average. Inter-city supply chains in China, which are associated with 80% of carbon emissions, imply substantial carbon leakage risks and also contribute to socioeconomic disparities. However, the significant carbon inequality implies a leveraging opportunity that substantial mitigation can be achieved by 32 super-emitting cities. If the super-emitting cities adopt their differentiated mitigation pathway based on affluence, industrial structure, and role of supply chains, up to 1.4 Gt carbon quota can be created, raising 30% of the projected carbon quota to carbon peak. The additional carbon quota allows the average living standard of the other 60% of Chinese people to reach an upper-middle-income level, highlighting collaborative mechanism at the city level has a great potential to lead to a convergence of both equity and mitigation targets.

17.
Patterns (N Y) ; 4(7): 100760, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37521048

RESUMEN

Emerging economies are predicted to be future emission hotspots due to expected levels of urbanization and industrialization, and their CO2 emissions are receiving more scrutiny. However, the driving forces underlying dynamic change in emissions are poorly understood, despite their crucial role in developing targeted mitigating pathways. We firstly compile energy-related emissions of 30 selective emerging economies from 2010 to 2018. Then, three growth patterns of emissions in these economies have been identified through emission data, which imply different low-carbon pathways. Most emerging economies saw an increase of varying degrees in emissions, driven by economic growth and partly offset by better energy efficiency and improvements in energy mixes. Furthermore, the industrial structure was another factor that slowed emissions, especially in Latin America and the Caribbean. Our research contributes to the heterogeneous exploration of CO2 emissions produced by energy among sectors and the creation of low-carbon development pathways in emerging economies.

18.
Nutrients ; 15(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447204

RESUMEN

The need to make more accurate grain demand (GD) forecasting has become a major topic in the current international grain security discussion. Our research aims to improve short-term GD prediction by establishing a multi-factor model that integrates the key factors: shifts in dietary structures, population size and age structure, urbanization, food waste, and the impact of COVID-19. These factors were not considered simultaneously in previous research. To illustrate the model, we projected China's annual GDP from 2022 to 2025. We calibrated key parameters such as conversion coefficients from animal foods to feed grain, standard person consumption ratios, and population size using the latest surveys and statistical data that were either out of date or missing in previous research. Results indicate that if the change in diets continued at the rate as observed during 2013-2019 (scenario 1), China's GD is projected to be 629.35 million tons in 2022 and 658.16 million tons in 2025. However, if diets shift to align with the recommendations in the Dietary Guideline for Chinese Residents 2022 (scenario 2), GD would be lower by 5.9-11.1% annually compared to scenario 1. A reduction in feed grain accounts for 68% of this change. Furthermore, for every 1 percentage point increase in the population adopting a balanced diet, GD would fall by 0.44-0.73 million tons annually during that period. Overlooking changes in the population age structure could lead to an overprediction of annual GDP by 3.8% from 2022 to 2025. With an aging population, China's GD would fall slightly, and adopting a balanced diet would not lead to an increase in GD but would have positive impacts on human health and the environment. Our sensitivity analysis indicated that reducing food waste, particularly cereal, livestock, and poultry waste, would have significant effects on reducing GD, offsetting the higher demand due to rising urbanization and higher incomes. These results underscore the significance of simultaneous consideration of multiple factors, particularly the dietary structure and demographic composition, resulting in a more accurate prediction of GD. Our findings should be useful for policymakers concerning grain security, health, and environmental protection.


Asunto(s)
COVID-19 , Eliminación de Residuos , Humanos , Anciano , Grano Comestible , Dieta , Envejecimiento , China/epidemiología
19.
Nat Commun ; 14(1): 3775, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355731

RESUMEN

International trade affects CO2 emissions by redistributing production activities to places where the emission intensities are different from the place of consumption. This study focuses on the net emission change as the result of the narrowing gap in emission intensities between the exporter and importer. Here we show that the relocation of production activities from the global North (developed countries) to the global South (developing countries) in the early 2000s leads to an increase in global emissions due to the higher emission intensities in China and India. The related net emissions are about one-third of the total emissions embodied in the South-North trade. However, the narrowing emission intensities between South-North and the changing trade patterns results in declining net emissions in trade in the past decade. The convergence of emission intensities in the global South alleviates concerns that increasing South-South trade would lead to increased carbon leakage and carbon emissions. The mitigation opportunity to green the supply chain lies in sectors such as electricity, mineral products and chemical products, but calls for a universal assessment of emission intensities and concerted effort.


Asunto(s)
Carbono , Países en Desarrollo , Comercio , Internacionalidad , China , Dióxido de Carbono/análisis
20.
Environ Sci Ecotechnol ; 16: 100280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37273886

RESUMEN

It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction, air quality improvement, and improved health. In the context of carbon peak, carbon neutrality, and clean air policies, this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators. The 18 indicators cover the following five aspects: air pollution and associated weather-climate conditions, progress in structural transition, sources, inks, and mitigation pathway of atmospheric composition, health impacts and benefits of coordinated control, and synergetic governance system and practices. By tracking the progress in each indicator, this perspective presents the major accomplishment of coordinated control, identifies the emerging challenges toward the synergetic governance, and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA