Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 341: 122928, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967711

RESUMEN

Natural resistance associated macrophage protein 5 (NRAMP5) is a key transporter for cadmium (Cd) uptake by rice roots; however, the effect of OsNRAMP5 on Cd translocation and redistribution in rice plants remains unknown. In this study, an extremely low Cd-accumulation mutant (lcd1) and wild type (WT) plants were utilized to investigate the effect of OsNRAMP5 mutation on Cd translocation and redistribution via the xylem and phloem and its possible physiological mechanism using field, hydroponic and isotope-labelling experiments. The results showed that OsNRAMP5 mutation reduced xylem and phloem transport of Cd, due to remarkably lower Cd translocation from roots to shoots and from the leaves Ⅰ-Ⅲ to their corresponding nodes, as well as lower Cd concentrations in xylem and phloem sap of lcd1 compared to WT plants. Mutation of OsNRAMP5 reduced Cd translocation from roots to shoots in lcd1 plants by increasing Cd deposition in cellulose of root cell walls and reducing OsHMA2-and OsCCX2-mediated xylem loading of Cd, and the citric acid- and tartaric acid-mediated long-distance xylem transport of Cd. Moreover, OsNRAMP5 mutation inhibited Cd redistribution from flag leaves to nodes and panicles in lcd1 plants by increasing Cd sequestration in cellulose and vacuoles, and decreasing OsLCT1-mediated Cd phloem transport in flag leaves.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Oryza/genética , Oryza/metabolismo , Floema/metabolismo , Transporte Biológico , Xilema/metabolismo , Mutación , Celulosa/metabolismo , Raíces de Plantas/metabolismo
2.
Environ Sci Pollut Res Int ; 31(5): 7298-7311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157175

RESUMEN

In this study, 6229 brown rice grains from three major rice-producing regions were collected to investigate the spatial and variety distributions of heavy metals in rice grains in China. The potential sources of heavy metals in rice grains were identified using the Pearson correlation matrix and principal component analysis, and the health risks of dietary exposure to heavy metals via rice consumption were assessed using the hazard index (HI) and total carcinogenic risk (TCR) method, respectively. Moreover, 48 paired soil and rice samples from 11 cities were collected to construct a predicting model for Cd accumulation in rice grains using the multiple linear stepwise regression analysis. The results indicated that Cd and Ni were the main heavy metal pollutants in rice grains in China, with approximately 10% of samples exceeding their corresponding maximum allowable limits. The Yangtze River basin had heavier pollution of heavy metals than the Southeast Coastal Region and Northeast Plain, and the indica rice varieties had higher heavy metal accumulation abilities compared with the japonica rice. The Cu, Pb, and Cd mainly originated from anthropogenic sources, while As, Hg, Cr, and Ni originated from both natural and anthropogenic sources. The mean HI and TCR values of dietary exposure to heavy metals via rice consumption ranged from 2.92 to 4.31 and 9.74 × 10-3 to 1.44 × 10-2, respectively, much higher than the acceptable range, and As and Ni were the main contributor to the HI and TCR for Chinese adults and children, respectively. The available Si (ASi), total Cd (TCd), available Mo (AMo), and available S (AS) were the main soil factors determining grain Cd accumulation. A multiple linear stepwise regression model was constructed based on ASi, TCd, AMo, and AS in soils with good accuracy and precision, which could be applied to predict Cd accumulation in rice grains and guide safe rice production in contaminated paddy fields.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Niño , Adulto , Humanos , Cadmio/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Medición de Riesgo , China , Suelo , Receptores de Antígenos de Linfocitos T , Monitoreo del Ambiente
3.
J Hazard Mater ; 426: 128063, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920221

RESUMEN

Copper (Cu) is an essential but potentially toxic element in rice. Little is known about the mechanism of rice grain Cu accumulation. In this study, we identified a high copper accumulation in grain 1 (oshc1) mutant from the wild type indica rice cultivar 9311 (WT) mutant bank. Compared with those in WT, more Cu was shown to accumulate in the shoots of seedlings and the above-ground tissues except nodes although less total Cu content in oshc1. Further analysis showed that the mutant had an accelerated Cu transport ratio from roots to shoots and higher Cu concentration in xylem sap than WT. This phenomenon in oshc1 was controlled by a single recessive gene, which was identified as BGIOSGA007732, and named OsHMA4. The eight base frame-shift from 1021 to 1028 bp in the coding sequence of OsHMA4 led to a modification after the 341st amino acid and resulted in premature translation termination of OsHMA4 at the 377th amino acid. This may change the function of OsHMA4. Furthermore, the up-regulated OsCOPT7 and OsATX1 and down-regulated OsHMA4 probably decrease Cu compartmentalization in roots of oshc1. In summary, the frame-shift in OsHMA4 changes the function of OsHMA4 and the expression of genes relative to Cu transport in the mutant, which leads to more Cu transport upward and higher Cu accumulation in the rice grains. Moreover, oshc1 was more tolerance to Cu-shortage than WT, while more sensitive to Cu excess exposure than WT. However, RNA-Seq analysis shown that changes in transcription levels of genes in oshc1 involving in molecular function of ions binding and biological processes of cell wall organization and defense response to bio-stress. Which indicates that oshc1 is advantage to Cu limited condition than WT. This work reveals the mechanism of high Cu accumulation in the grains of oshc1 and provides a material to breed new cultivars with optimum levels of Cu in brown rice by crossing with other dominant varieties, which can be planted in different soils to ensure the yield and quality of rice.


Asunto(s)
Oryza , Contaminantes del Suelo , Cobre/toxicidad , Oryza/genética , Raíces de Plantas/genética , Suelo
4.
Sci Total Environ ; 797: 149202, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346363

RESUMEN

The effects of salicylic acid (SA) on cadmium (Cd) accumulation, Cd subcellular distribution, cell wall composition and Cd adsorption in Cd-stressed rice seedlings were examined. The interaction between SA and nitric oxide (NO) signaling in regulating cell wall composition under Cd exposure was also investigated. Our results showed that 5 µmol·L-1 Cd treatment significantly decreased plant height, root length and plant dry weight by 40.1%, 46.1% and 21.3% (p < 0.05), respectively, and the inhibitory effects of Cd on the growth parameters were alleviated by exogenous SA. Application of SA remarkably decreased Cd concentrations in roots and shoots of rice seedlings by 48.0% and 19.6%, respectively, and increased the distribution ratio of Cd in the root cell wall fraction (from 35.7% to 40.6%) compared with Cd treatment alone. The reduced Cd accumulation in rice plants could be attributed to that SA application promoted pectin synthesis and demethylesterification, thereby increasing Cd deposition in the root cell wall. Moreover, SA application promoted lignin biosynthesis to strengthen the cell wall and prevent Cd from entering the root cells. In addition, NO might be involved in SA-induced pectin synthesis, pectin demethylesterification and lignin biosynthesis as a downstream signaling molecule, contributing to reduced Cd accumulation in Cd-stressed rice seedlings. The results provide deep insights into the mechanisms of exogenous SA action in reducing Cd accumulation in rice plants.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/toxicidad , Pared Celular , Óxido Nítrico , Raíces de Plantas , Ácido Salicílico , Plantones , Contaminantes del Suelo/toxicidad
5.
Ecotoxicol Environ Saf ; 218: 112269, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33932653

RESUMEN

Management of nitrogen fertilizer is a good strategy for controlling cadmium (Cd) accumulation in plants. Some progress has already been made but much remains to be done. Here, we show that mutants with loss of function of nitrate transporter1.1 (NRT1.1) or nitrate transporter2.1 (NRT2.1) had lower Cd concentrations than wild-type plants under low-nitrate conditions. However, this was eliminated when plants were cultivated in nitrate-free medium or supplied with Cd and nitrate alternately. These findings indicate that inhibition of NRT1.1 or NRT2.1 activity reduces Cd accumulation in plants, and depends on the presence of nitrate. The results showing that nrt2.1-2 mutants had the lowest Cd concentrations compared with Col-0, nrt1.1 and nrt2.4 plants, proves that NRT2.1 is the major contributor to Cd uptake controlled by nitrate high-affinity transporters. NRT2.1 acts as the major contributor to nitrate uptake under Cd stress in low-nitrate conditions, and contributes about 50% to nitrate uptake, while NRT1.1 contributes only 10%, and little is known regarding the role of NRT2.2 and NRT2.4 on nitrate uptake in medium with 200 µM nitrate. Positive correlations between nitrate uptake and Cd concentration in plants were also observed. Collectively, NRT2.1 acts as the major contributor to Cd uptake by controlling nitrate uptake in nitrate high-affinity systems.

6.
Ecotoxicol Environ Saf ; 206: 111208, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32871521

RESUMEN

Water management is an economic and effective strategy to reduce arsenic (As) accumulation in rice grains, but little is known about the effect of water management on the migration and transformation of As in the soil-rice system. In this study, the effect of the continually (CF) and intermittent flooding (IF) treatments on the dynamic change of As in the rhizosphere soil-pore water-iron plaque-rice system was systematically investigated using pot experiments. The expressions of genes involved in As uptake and translocation in rice plants under different water management treatments were further examined. Results showed that the total As concentration in brown rice was increased by 50.8% in the CF treatment compared to the IF treatment, and dimethylarsinic acid (DMA) made greater contribution (from 15.5% to 29.2%) to total As increase in brown rice under the CF treatment. The CF treatment increased As bioavailability in the rhizosphere soil and soil pore water, which enhanced As uptake and transport to the xylem in rice plants by inducing the expressions of silicon transporter genes (OsLsi1 and OsLsi2) compared to the IF treatment. Moreover, the CF treatment increased As translocation from roots to shoots by reducing soil available sulfur and phytochelatins (PCs) biosynthesis and vacuolar sequestration in rice roots compared with the IF treatment. The study provides insight into the physiological and molecular mechanisms underlying As uptake and translocation in rice plants under different water regimes, which will be helpful for adopting the irrigation technique to mitigate excessive As accumulation in rice grains and associated health risk to humans.


Asunto(s)
Riego Agrícola/métodos , Arsénico/metabolismo , Proteínas de Transporte de Membrana/genética , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Arsénico/análisis , Disponibilidad Biológica , Transporte Biológico , Ácido Cacodílico/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Humanos , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
7.
J Zhejiang Univ Sci B ; 18(10): 897-905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28990380

RESUMEN

Cadmium (Cd) contamination in soil is an increasingly serious problem. Management of plant nutrients has been proposed as a potentially promising strategy for minimizing Cd accumulation in crops grown in contaminated soil. This study investigated the effects of split applications of nitrogen (N) fertilizers on the Cd concentration in Chinese cabbage (Brassica chinensis L.) plants grown in Cd-contaminated soil. Compared with single applications, split applications of ammonium or urea resulted in significantly lower Cd concentrations, and higher biomass production and antioxidant-associated nutritional quality in the edible plant parts. However, when nitrate was used as the N fertilizer, there were no significant differences between the split and single applications for the same parameters. We conclude that a split application could be more beneficial than a single application method when ammonium or urea is used as the N fertilizer for vegetable cultivation in Cd-contaminated soil.


Asunto(s)
Brassica , Cadmio/análisis , Fertilizantes , Nitrógeno/farmacología , Valor Nutritivo , Biomasa , Brassica/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...