Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Light Sci Appl ; 13(1): 147, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951501

RESUMEN

Arrayed waveguide grating is a versatile and scalable integrated light dispersion device, which has been widely adopted in various applications, including, optical communications and optical sensing. Recently, thin-film lithium niobate emerges as a promising photonic integration platform, due to its ability of shrinking largely the size of typical lithium niobate based optical devices. This would also enable multifunctional photonic integrated chips on a single lithium niobate substrate. However, due to the intrinsic anisotropy of the material, to build an arrayed waveguide grating on X-cut thin-film lithium niobate has never been successful. Here, a universal strategy to design anisotropy-free dispersive components on a uniaxial in-plane anisotropic photonic integration platform is introduced for the first time. This leads to the first implementation of arrayed waveguide gratings on X-cut thin-film lithium niobate with various configurations and high-performances. The best insertion loss of 2.4 dB and crosstalk of -24.1 dB is obtained for the fabricated arrayed waveguide grating devices. Applications of such arrayed waveguide gratings as a wavelength router and in a wavelength-division multiplexed optical transmission system are also demonstrated.

2.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38981852

RESUMEN

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Asunto(s)
Astrocitos , Trastornos de la Memoria , Metanfetamina , Microglía , Minociclina , Memoria Espacial , Animales , Metanfetamina/toxicidad , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Trastornos de la Memoria/inducido químicamente , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Memoria Espacial/fisiología , Memoria Espacial/efectos de los fármacos , Masculino , Minociclina/farmacología , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Estimulantes del Sistema Nervioso Central/toxicidad
3.
Theranostics ; 14(7): 2881-2896, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773977

RESUMEN

Methamphetamine (METH) withdrawal anxiety symptom and relapse have been significant challenges for clinical practice, however, the underlying neuronal basis remains unclear. Our recent research has identified a specific subpopulation of choline acetyltransferase (ChAT+) neurons localized in the external lateral portion of parabrachial nucleus (eLPBChAT), which modulates METH primed-reinstatement of conditioned place preference (CPP). Here, the anatomical structures and functional roles of eLPBChAT projections in METH withdrawal anxiety and primed reinstatement were further explored. Methods: In the present study, a multifaceted approach was employed to dissect the LPBChAT+ projections in male mice, including anterograde and retrograde tracing, acetylcholine (Ach) indicator combined with fiber photometry recording, photogenetic and chemogenetic regulation, as well as electrophysiological recording. METH withdrawal anxiety-like behaviors and METH-primed reinstatement of conditioned place preference (CPP) were assessed in male mice. Results: We identified that eLPBChAT send projections to PKCδ-positive (PKCδ+) neurons in lateral portion of central nucleus of amygdala (lCeAPKCδ) and oval portion of bed nucleus of the stria terminalis (ovBNSTPKCδ), forming eLPBChAT-lCeAPKCδ and eLPBChAT-ovBNSTPKCδ pathways. At least in part, the eLPBChAT neurons positively innervate lCeAPKCδ neurons and ovBNSTPKCδ neurons through regulating synaptic elements of presynaptic Ach release and postsynaptic nicotinic acetylcholine receptors (nAChRs). METH withdrawal anxiety and METH-primed reinstatement of CPP respectively recruit eLPBChAT-lCeAPKCδ pathway and eLPBChAT-ovBNSTPKCδ pathway in male mice. Conclusion: Our findings put new insights into the complex neural networks, especially focusing on the eLPBChAT projections. The eLPBChAT is a critical node in the neural networks governing METH withdrawal anxiety and primed-reinstatement of CPP through its projections to the lCeAPKCδ and ovBNSTPKCδ, respectively.


Asunto(s)
Ansiedad , Metanfetamina , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias , Animales , Metanfetamina/efectos adversos , Masculino , Ratones , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/fisiopatología , Ansiedad/metabolismo , Neuronas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Núcleos Septales/metabolismo , Conducta Animal/efectos de los fármacos
4.
Cell Mol Biol Lett ; 29(1): 37, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486171

RESUMEN

BACKGROUND: DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS: Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS: We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS: Our findings reveal that MRE11A is a negative regulator of human MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Metilnitronitrosoguanidina , Humanos , Cromatina , Células HeLa , Metilnitronitrosoguanidina/farmacología , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto
5.
Integr Med Res ; 13(1): 101006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298862

RESUMEN

Background: Our previous studies proved that neurogenic inflammatory spots (or neurogenic spots) have the same physiological features as acupuncture points and that neurogenic spot stimulation generates therapeutic effects in various animal models. However, it is unclear how deeply the neurogenic spots should be stimulated to generate therapeutic effects. Methods: The effects of acupuncture at various needle depths below the neurogenic spot were examined in a rat immobilization stress-induced hypertension (IMH) model. Electroacupuncture was applied to a neurogenic spot at depths of 1, 2, or 3 mm using a concentric bipolar electrode. Results: Electrical stimulation of the neurogenic spot at a 3-mm depth most effectively lowered blood pressure compared with controls and stimulation at 1- and 2-mm depths, which was inhibited by pretreatment with a local anesthetic lidocaine. Electrical stimulation of the neurogenic spot or injection of substance P (SP) at a 3-mm depth significantly excited the rostral ventrolateral medulla (rVLM) compared with superficial stimulation. Electrical stimulation applied at a 3-mm depth on neurogenic spots dominantly caused c-fos expression from rVLM and ventrolateral periaqueductal gray (vlPAG) in IMH rats. Pretreatment with resiniferatoxin (RTX) injection into the neurogenic spot to ablate SP or calcitonin gene-related peptide (CGRP) prevented the effects of 3-mm neurogenic spot stimulation on blood pressure in IMH rats. Conversely, artificial injection of SP or CGRP generated anti-hypertensive effects in IMH rats. Conclusion: Our data suggest that neurogenic spot stimulation at a 3-mm depth generated anti-hypertensive effects through the local release of SP and CGRP and activation of rVLM and vlPAG.

6.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38331582

RESUMEN

Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Animales , Masculino , Ratones , Metanfetamina/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Refuerzo en Psicología , Cerebelo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
7.
Psychopharmacology (Berl) ; 241(5): 897-911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38092953

RESUMEN

RATIONALE: Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear. OBJECTIVES: The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1). METHODS: METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR. RESULTS: METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC. CONCLUSIONS: Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.

8.
J Neurosci ; 44(5)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38148153

RESUMEN

Adolescent cocaine exposure (ACE) induces anxiety and higher sensitivity to substances abuse during adulthood. Here, we show that the claustrum is crucial for controlling these psychiatric problems in male mice. In anxiety-like behavioral tests, the CaMKII-positive neurons in the median portion of the claustrum (MClaustrum) were triggered, and local suppression of these neurons reduced the anxiety-like behavior in ACE mice during adulthood. In contrast, the CaMKII-positive neurons in the anterior portion of the claustrum (AClaustrum) were more activated in response to subthreshold dose of cocaine induced conditioned place preference (CPP), and local suppression of these neurons blocked the acquisition of cocaine CPP in ACE mice during adulthood. Our findings for the first time identified the fine-regional role of the claustrum in regulating the anxiety and susceptibility to cocaine in ACE mice during adulthood, extending our understanding of the claustrum in substance use disorder.


Asunto(s)
Claustro , Cocaína , Masculino , Animales , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Recompensa , Cocaína/farmacología , Ansiedad
9.
Addict Biol ; 28(12): e13354, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017642

RESUMEN

Administration of cocaine increases synaptic dopamine levels by blocking dopamine reuptake and leads to increased locomotor activity and compulsive drug-seeking behaviour. It has been suggested that the lateral hypothalamus (LH) or lateral habenula (LHb) is involved in drug-seeking behaviours. To explore the role of the LH and the LHb in cocaine-induced psychomotor responses, we tested whether modulation of the LH or the LH-LHb circuit affects cocaine-induced locomotion. Cocaine-induced locomotor activity and dopamine release were suppressed by the activation of the LH with 2-[2,6-difluoro-4-[[2-[(phenylsulfonyl)amino]ethyl]thio]phenoxy]acetamide (PEPA), an AMPA receptor agonist. When the LH was inhibited by microinjection of a GABA receptor agonists mixture prior to cocaine injection, the cocaine's effects were enhanced. Furthermore, optogenetic activation of the LH-LHb circuit attenuated the cocaine-induced locomotion, while optogenetic inhibition of the LH-LHb circuit increased it. In vivo extracellular recording found that the LH sent a glutamatergic projection to the LHb. These findings suggest that the LH glutamatergic projection to the LHb plays an active role in the modulation of cocaine-induced psychomotor responses.


Asunto(s)
Cocaína , Habénula , Cocaína/farmacología , Dopamina , Área Hipotalámica Lateral , Agonistas del GABA/farmacología
10.
Transl Psychiatry ; 13(1): 324, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857642

RESUMEN

Paternal abuse of drugs, such as methamphetamine (METH), elevates the risk of developing addiction in subsequent generations, however, its underlying molecular mechanism remains poorly understood. Male adult mice (F0) were exposed to METH for 30 days, followed by mating with naïve female mice to create the first-generation mice (F1). When growing to adulthood, F1 were subjected to conditioned place preference (CPP) test. Subthreshold dose of METH (sd-METH), insufficient to induce CPP normally, were used in F1. Selective antagonist (betaxolol) for ß1-adrenergic receptor (ADRB1) or its knocking-down virus were administrated into mPFC to regulate ADRB1 function and expression on CaMKII-positive neurons. METH-sired male F1 acquired sd-METH-induced CPP, indicating that paternal METH exposure induce higher sensitivity to METH in male F1. Compared with saline (SAL)-sired male F1, CaMKII-positive neuronal activity was normal without sd-METH, but strongly evoked after sd-METH treatment in METH-sired male F1 during adulthood. METH-sired male F1 had higher ADRB1 levels without sd-METH, which was kept at higher levels after sd-METH treatment in mPFC. Either inhibiting ADRB1 function with betaxolol, or knocking-down ADRB1 level on CaMKII-positive neurons (ADRB1CaMKII) with virus transfection efficiently suppressed sd-METH -evoked mPFC activation, and ultimately blocked sd-METH-induced CPP in METH-sired male F1. In the process, the p-ERK1/2 and ΔFosB may be potential subsequent signals of mPFC ADRB1CaMKII. The mPFC ADRB1CaMKII mediates paternal METH exposure-induced higher sensitivity to drug addiction in male offspring, raising a promising pharmacological target for predicting or treating transgenerational addiction.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Masculino , Femenino , Ratones , Animales , Metanfetamina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Betaxolol , Fosforilación , Estimulantes del Sistema Nervioso Central/farmacología
11.
Front Optoelectron ; 16(1): 23, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737551

RESUMEN

An optical phased array (OPA) is a promising non-mechanical technique for beam steering in solid-state light detection and ranging systems. The performance of the OPA largely depends on the phase shifter, which affects power consumption, insertion loss, modulation speed, and footprint. However, for a thermo-optic phase shifter, achieving good performance in all aspects is challenging due to trade-offs among these aspects. In this work, we propose and demonstrate two types of energy-efficient optical phase shifters that overcome these trade-offs and achieve a well-balanced performance in all aspects. Additionally, the proposed round-spiral phase shifter is robust in fabrication and fully compatible with deep ultraviolet (DUV) processes, making it an ideal building block for large-scale photonic integrated circuits (PICs). Using the high-performance phase shifter, we propose a periodic OPA with low power consumption, whose maximum electric power consumption within the field of view is only 0.33 W. Moreover, we designed Gaussian power distribution in both the azimuthal ([Formula: see text]) and polar ([Formula: see text]) directions and experimentally achieved a large sidelobe suppression ratio of 15.1 and 25 dB, respectively.

12.
Addict Biol ; 28(9): e13314, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37644891

RESUMEN

Methamphetamine (Meth) withdrawal elicits anxiety, which is a public health concern with limited therapeutic options. Previous studies implied a strong correlation between mPFC and Meth withdrawal. Here, we examined the role of Gegen-Qinlian decoction (GQD) in Meth withdrawal anxiety and explored potential therapeutic targets in mPFC. We found that intra-gastric administration of GQD during the withdrawal period efficiently alleviated anxiety-like behaviours in Meth-withdrawn mice. Further, GQD could restore Meth withdrawal-triggered pathway of GABAergic interneurons (GABA IN)-pyramidal neurons (PN) in the mPFC of Meth-withdrawn mice, especially the prelimbic cortex (PrL) sub-region and PV-positive GABA IN. While, GQD had no obvious effects on the glial cells in the mPFC of Meth-withdrawn mice. By transcriptomic analysis and validation of several gene candidates, we found that genes in the MAPK signalling pathway, especially those related to heat shock proteins, including Hspa1a, Hspa1b and Hspb1, might be GQD-targeting genes in mPFC to treat Meth withdrawal anxiety, as indicated that these genes were up-regulated by Meth withdrawal but rescued by GQD in mPFC. Collectively, our findings identified for the first time that GQD could efficiently alleviate Meth withdrawal anxiety, partially through regulating the local GABA IN-PN pathway and transcriptomic profile of mPFC. The present study confirms that TCM, such as GQD, will be a desirable therapeutic approach in the treatment of drug addiction and related emotional deficits.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Medicina Tradicional China , Ansiedad/tratamiento farmacológico , Células Piramidales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Interneuronas , Ácido gamma-Aminobutírico
13.
EMBO Rep ; 24(9): e56981, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37535645

RESUMEN

Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratones , Masculino , Animales , Cocaína/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Prefrontal , Neuronas/metabolismo
14.
Front Mol Neurosci ; 16: 1195939, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501724

RESUMEN

Introduction: The lateral hypothalamus (LH) plays an important physiological role in brain function and also plays an important role in substance abuse. The neuropeptides called orexin (or hypocretins) have been identified as being located exclusively in the cell bodies of the LH. Our previous studies have demonstrated that mechanical stimulation (MS) of the ulnar nerve produces strong inhibitory effects on cocaine addiction-like behaviors through activation of LH projection to the lateral habenula (LHb). Methods: Therefore, the present study hypothesized that ulnar MS would suppress the psychomotor responses induced by cocaine through the orexinergic LH-to-LHb pathway. Results: Ulnar MS attenuated cocaine enhancement of locomotor activity and 50-kHz ultrasonic vocalizations, which was prevented by antagonism of orexin-receptor type 2 (OX2R) in the LHb. Injection of orexin-A into the LHb reduced the cocaine-induced psychomotor responses. MS of the ulnar nerve excited LH orexinergic neurons. In addition, the excitation of LHb neurons by MS was blocked by the systemic administration of an OX2R antagonist. Discussion: These findings suggest that MS applied to the ulnar nerve recruits an orexinergic LH-to-LHb pathway to suppress the psychomotor responses induced by cocaine.

15.
Chin Med ; 18(1): 85, 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37455317

RESUMEN

BACKGROUND: Anxiety is a prominent withdrawal symptom of methamphetamine (Meth) addiction. Recently, the gut microbiota has been regarded as a promising target for modulating anxiety. Gegen-Qinlian decoction (GQD) is a classical Traditional Chinese Medicine applied in interventions of various gut disorders by balancing the gut microbiome. We aim to investigate whether GQD could alleviate Meth withdrawal anxiety through balancing gut microbiota and gut microenvironment. METHODS: Meth withdrawal anxiety models were established in mice. GQD were intragastric administrated into Meth-withdrawn mice and controls. Gut permeability and inflammatory status were examined in mice. Germ-free (GF) and antibiotics-treated (Abx) mice were used to evaluate the role of gut bacteria in withdrawal anxiety. Gut microbiota was profiled with 16s rRNA sequencing in feces. Metabolomics in colon tissue and in Akkermansia culture medium were performed. RESULTS: Meth withdrawal enhanced anxiety-like behaviors in wild-type mice, and altered gut permeability, and inflammatory status, while GQD treatment during the withdrawal period efficiently alleviated anxiety-like behaviors and improved gut microenvironment. Next, we found Germ-free (GF) and antibiotics-treated (Abx) mice did not develop anxiety-like behaviors by Meth withdrawal, indicating the essential role of gut bacteria in Meth withdrawal induced anxiety. Then, it was observed that gut microbiota was greatly affected in Meth-withdrawn mice, especially the reduction in Akkermansia. GQD can rescue the gut microbiota and reverse Akkermansia abundance in Meth-withdrawn mice. Meanwhile, GQD can also restore the Meth-impaired Akkermansia growth in vitro. Further, GQD restored several common metabolite levels both in colon in vivo and in Akkermansia in vitro. CONCLUSIONS: We revealed a novel effect of GQD on Meth withdrawal anxiety and identified its pharmacological target axis as "Akkermansia-Akkermansia metabolites-gut metabolites-gut microenvironment". Our findings indicated that targeting gut bacteria with TCM, such as GQD, might be a promising therapeutic strategy for addiction and related withdrawal symptoms.

16.
Front Plant Sci ; 14: 1133021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260940

RESUMEN

Histone acetylation is one of the most pivotal epigenetic mechanisms in eukaryotes and has been tightly linked to the regulation of various genes controlling growth, development and response to environmental stresses in both animals and plants. Till date, the association of histone acetylation to dehydration stress in red algae and genes encoding the enzymes responsible for histone acetylation: histone acetyltransferases (HATs) or histone deacetylases (HDACs), remains largely unknown. In this study, in silico analysis of the red seaweed Pyropia yezoensis identified 6 HAT genes and 10 HDAC genes. These genes displayed good synteny in genome loci with their Pyropia haitanensis orthologs except for a putative gene duplication event in HDAC and a loss of one HAT gene in P. yezoensis. According to the conserved domains and phylogenetic analysis, they encoded three GCNA5-, one TAFII250- and one MYST-HAT, as well as five HDA1-and five SIRT-HDACs. The sirtuin-domain of Py06502 harbored a ~100 aa insert and interestingly, this insertion was specifically observed in Bangiales species. Two nuclear-localized HATs were transcriptionally up-regulated at the early stage of dehydration and so were two nuclear HDA1s when moderate dehydration started, suggesting their potential roles in modulating downstream gene expression to facilitate dehydration adaptation by changing histone acetylation patterns on relevant regulatory elements. This was experimentally confirmed by the increased decline in photosynthesis efficiency during dehydration when HAT and HDAC activities were inhibited by SAHA and MB-3, respectively. Transcriptional patterns of multiple dehydration-responsive genes after water loss were strongly affected by MB-3 or SAHA treatment. This study provides the first insight into the regulation and function of HAT/HDAC during stress adaptation in red algae.

17.
Theranostics ; 13(10): 3149-3164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351159

RESUMEN

Adolescent cocaine exposure (ACE) increases risk of developing psychiatric problems such as anxiety, which may drive relapse in later life, however, its underlying molecular mechanism remains poorly understood. Methods: ACE male mice model were established by exposing to cocaine during adolescent period. Elevated plus maze (EPM) were used to assess anxiety-like behaviors in mice. Within claustrum, local injection of SCH-23390, a specific antagonist for dopamine receptor 1 (D1R), or D1R knocking-down virus were used to regulate D1R function or expression on CaMKII-positive neurons (D1RCaMKII) in vivo. Electro-acupuncture (EA) treatment was performed at acupoints of Baihui and Yintang during withdrawal period. Results: We found that ACE mice exhibited anxiety-like behaviors, along with more activated CaMKII-positive neurons and increased D1RCaMKII levels in claustrum during adulthood. Inhibiting D1R function or knocking-down D1RCaMKII levels in claustrum efficiently reduced claustrum activation, and ultimately suppressed anxiety-like behaviors in ACE mice during adulthood. EA treatment alleviated ACE-evoked claustrum activation and anxiety-like behaviors by suppressing claustrum D1RCaMKII. Conclusion: Our findings identified a novel role of claustrum in ACE-induced anxiety-like behaviors, and put new insight into the D1RCaMKII in the claustrum. The claustrum D1RCaMKII might be a promising pharmacological target, such as EA treatment, to treat drug-induced anxiety-like behaviors.


Asunto(s)
Claustro , Cocaína , Ratones , Masculino , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Claustro/metabolismo , Cocaína/metabolismo , Cocaína/farmacología , Neuronas/metabolismo , Ansiedad/inducido químicamente , Ansiedad/terapia , Receptores de Dopamina D1/metabolismo
18.
Plants (Basel) ; 12(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176941

RESUMEN

Contamination from cytosolic DNA (plastid and mitochondrion) and epiphytic bacteria is challenging the efficiency and accuracy of genome-wide analysis of nori-producing marine seaweed Pyropia yezoensis. Unlike bacteria and organellar DNA, Pyropia nuclear DNA is closely associated with histone proteins. In this study, we applied Chromatin Immunoprecipitation (ChIP) of histone H3 to isolate nuclear DNA, followed by high-throughput sequencing. More than 99.41% of ChIP-sequencing data were successfully aligned to the reference nuclear genome; this was remarkably higher than those from direct extraction and direct extraction data, in which 40.96% to 42.95% are from plastids. The proportion of data that were mapped to the bacterial database when using ChIP extraction was very low. Additionally, ChIP data can cover up to 89.00% of the nuclear genome, higher than direct extraction data at equal data size and comparable to the latter at equal sequencing depth. The uncovered regions from the three methods are mostly overlapping, suggesting that incomplete sequencing accounts for the missing data, rather than failed chromatin-antibody binding in the ChIP extraction method. This ChIP extraction method can successfully separate nuclear DNA from cytosolic DNA and bacterial DNA, thus overwhelmingly reducing the sequencing cost in a genome resequencing project and providing strictly purified reference data for genome assembly. The method's applicability to other macroalgae makes it a valuable contribution to the algal research community.

19.
J Neurosci ; 43(5): 803-811, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564185

RESUMEN

Anxiety is one of the most common withdrawal symptoms of methamphetamine (METH) abuse, which further drives relapse to drugs. Interpeduncular nucleus (IPN) has been implicated in anxiety-like behaviors and addiction, yet its role in METH-abstinence-induced anxiety remains unknown. Here, we found that prolonged abstinence from METH enhanced anxiety-like behaviors in male mice, accompanied by more excited IPN GABAergic neurons, as indicated by the increased c-fos expression and the enhanced neuronal excitability by electrophysiological recording in the GABAergic neurons. Using the designer receptors exclusively activated by designer drugs method, specific inhibition of IPN GABAergic neurons rescued the aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduced anxiety-like behaviors, whereas it did not induce depression-like behaviors in male mice after prolonged abstinence from METH. These findings reveal that IPN GABAergic neurons should be a promising brain target to alleviate late withdrawal symptoms from METH with few side effects.SIGNIFICANCE STATEMENT Prolonged abstinence from METH triggers IPN GABAergic neurons and ultimately increases anxiety in male mice. Suppressing IPN GABAergic neurons rescues METH abstinence-induced aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduces anxiety in mice.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Núcleo Interpeduncular , Metanfetamina , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Animales , Metanfetamina/farmacología , Núcleo Interpeduncular/metabolismo , Ansiedad/metabolismo , Neuronas GABAérgicas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo
20.
Addict Biol ; 28(1): e13255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577725

RESUMEN

Methamphetamine (METH) is a commonly abused addictive psychostimulant, and METH-induced neurotoxic and behavioural deficits are in a sex-specific manner. However, there is lack of biomarkers to evaluate METH addiction in clinical practice, especially for gender differences. We utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to detect the serum metabolomics in METH addicts and controls, specially exploring the sex-specific metabolic alterations by METH abuse. We found that many differently expressed metabolites in METH addicts related to metabolisms of amino acid, energy, vitamin and neurological disorders. Further, METH abuse caused different patterns of metabolomics in a sex-specific manner. As to amino acid metabolism, L-phenylalanine, L-tryptophan and L-histidine in serum of male addicts and betaine in serum of female addicts were significantly changed by METH use. In addition, it seemed that purine and pyrimidine-related metabolites (e.g., xanthosine and adenosine 5'-monophosphate) in male and the metabolites of hormone (e.g., cortisol) and folate biosynthesis (e.g., 7,8-dihydrobiopterin and 4-hydroxybenzoic acid) in female were more sensitive to METH addiction. Our findings revealed that L-glutamic acid, L-aspartic acid, alpha-ketoglutarate acid and citric acid may be potential biomarkers for monitoring METH addiction in clinic. Considering sex-specific toxicity by METH, the metabolites of purine and pyrimidine metabolism in male and those of stress-related hormones in female may be used to facilitate the accurate diagnosis and treatment for METH addicts of different genders.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Femenino , Masculino , Humanos , Metanfetamina/farmacología , Espectrometría de Masas en Tándem , Biomarcadores/metabolismo , Purinas , Aminoácidos , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...