Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896629

RESUMEN

Due to the strong oxidizing properties of H2O2, excessive discharge of H2O2 will cause great harm to the environment. Moreover, H2O2 is also an energetic material used as fuel, with specific attention given to its safety. Therefore, it is of great importance to explore and prepare good sensitive materials for the detection of H2O2 with a low detection limit and high selectivity. In this work, a kind of hydrogen peroxide electrochemical sensor has been fabricated. That is, polypyrrole (PPy) has been electropolymerized on the glass carbon electrode (GCE), and then Ag and Cu nanoparticles are modified together on the surface of polypyrrole by electrodeposition. SEM analysis shows that Cu and Ag nanoparticles are uniformly deposited on the surface of PPy. Electrochemical characterization results display that the sensor has a good response to H2O2 with two linear intervals. The first linear range is 0.1-1 mM (R2 = 0.9978, S = 265.06 µA/ (mM × cm2)), and the detection limit is 0.027 µM (S/N = 3). The second linear range is 1-35 mM (R2 = 0.9969, 445.78 µA/ (mM × cm2)), corresponding to 0.063 µM of detection limit (S/N = 3). The sensor reveals good reproducibility (σ = 2.104), repeatability (σ = 2.027), anti-interference, and stability. The recoveries of the electrode are 99.84-103.00% (for 0.1-1 mM of linear range) and 98.65-104.80% (for 1-35 mM linear range). Furthermore, the costs of the hydrogen peroxide electrochemical sensor proposed in this work are reduced largely by using non-precious metals without degradation of the sensing performance of H2O2. This study provides a facile way to develop nanocomposite electrochemical sensors.

3.
Materials (Basel) ; 15(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431682

RESUMEN

In this work, three additives BiOX (BiOI, BiOBr, and BiOF) for Al-H2O reaction have been synthesized using chemical methods. SEM analysis shows that the structure of BiOF is nanoparticles, while BiOBr and BiOI have flower-like structures composed of nanosheets. Then, Al-BiOI, Al-BiOBr, and Al-BiOF composites have been prepared using the ball milling method. The effect of halogen ions on the performance of hydrogen generation from Al hydrolysis has been explored. The results indicate that the conversion yields of Al-BiOBr, Al-BiOI, and Al-BiOF for hydrogen generation are 96.3%, 95.3%, and 8.9%, respectively. In particular, the maximum hydrogen generation rate (MHGR) of Al-BiOI is as high as 3451.8 mL g-1 min-1, eight times higher than that of Al-BiOBr. Furthermore, the influence rule of BiOX (X = F, Cl, Br, and I) on Al-H2O reaction has been studied using density functional theory. The results illustrate that HI can be more easily adsorbed on the Al surface as compared with HF, HCl, and HBr. Meanwhile, the bond length between halogen ions and the Al atom increased in the order of F-, Cl-, Br-, and I-. Therefore, the dissociation of I- from the Al surface becomes easier and will expose more active sites to enhance the reaction activity of Al. In summary, the BiOI has the most favorable performance to Al-H2O reaction.

4.
RSC Adv ; 12(49): 31985-31995, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380951

RESUMEN

Herein, a highly active Z-scheme SnS/Zn2SnO4 photocatalyst is fabricated by a one-step hydrothermal route. The structure, composition, photoelectric and photocatalytic properties of the as-prepared photocatalysts are systematically researched. The results demonstrate that SZS-6 displays a good photocatalytic performance with an efficiency of 94.5% to degrade methylene blue (MB) under visible light irradiation (λ > 420 nm). And its degradation rate constant is up to 0.0331 min-1, which is 3.9 and 4.4 times faster than SnS and Zn2SnO4, respectively. The formation of a Z-scheme heterojunction facilitates the separation and transfer of charges, which improves the degradation of MB. The Z-scheme charge transfer pathway of the SnS/Zn2SnO4 photocatalyst is verified by the shifted peaks of the X-ray photoelectron spectroscopy (XPS) spectrum, the relative position of the bandgap, work function as well as free radical trapping experiments. The photocatalytic mechanism for the degradation of MB by SnS/Zn2SnO4 is proposed.

5.
Chem Rec ; 22(10): e202200168, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36240459

RESUMEN

Lithium-sulfur battery is one of the most promising secondary battery systems due to their high energy density and low material cost. During the past decade, great progress has been achieved in promoting the performances of Li-S batteries by addressing the challenges at the laboratory-level model systems. With growing attention paid to the application of Li-S batteries, new challenges at practical cell scales emerge as the bottleneck. However, challenges remain for the commercialization of lithium-sulfur batteries. The current review mainly focused on metal-based catalysts decorated-carbon materials for enhanced lithium sulfur battery performance. Firstly, the synthesis methods of various carbon-sulfur composites are discussed, as well as the influence of different material structures on the electrochemical performance. Secondly, a variety of catalysts, including metal atoms, metal oxides, sulfides, phosphides, nitrides, and carbide-decorated carbon nanomaterials, are systematically introduced to determine how lithium can be enhanced by suppressing polysulfides and promoting redox conversion reactions. Also, analyzed the multi-step electrochemical reaction mechanism of the battery during the charging and discharging process, and provide a feasible path for the practical application of high energy density lithium-sulfur batteries.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35808022

RESUMEN

Supercapacitors, as a new type of green electrical energy storage device, are a potential solution to environmental problems created by economic development and the excessive use of fossil energy resources. In this work, nitrogen/oxygen (N/O)-doped porous carbon materials for high-performance supercapacitors are fabricated by calcining and activating an organic crosslinked polymer prepared using polyethylene glycol, hydroxypropyl methylcellulose, and 4,4-diphenylmethane diisocyanate. The porous carbon exhibits a large specific surface area (1589 m2·g-1) and high electrochemical performance, thanks to the network structure and rich N/O content in the organic crosslinked polymer. The optimized porous carbon material (COCLP-4.5), obtained by adjusting the raw material ratio of the organic crosslinked polymer, exhibits a high specific capacitance (522 F·g-1 at 0.5 A·g-1), good rate capability (319 F·g-1 at 20 A·g-1), and outstanding stability (83% retention after 5000 cycles) in a three-electrode system. Furthermore, an energy density of 18.04 Wh·kg-1 is obtained at a power density of 200.0 W·kg-1 in a two-electrode system. This study demonstrates that organic crosslinked polymer-derived porous carbon electrode materials have good energy storage potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA