Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193891

RESUMEN

T-helper 17 (Th17) cells play a dual role in immunological responses, serving as essential components in tissue homeostasis and host defense against microbial pathogens while also contributing to pro-inflammatory conditions and autoimmunity. While Transforming Growth Factor-beta 1 (TGFß1) is pivotal for the differentiation of non-pathogenic Th17 cells, the role of TGFß3 and Activin in steering Th17 cells toward a pathogenic phenotype has been acknowledged. However, the molecular mechanisms governing this dichotomy remain elusive. In this study, we demonstrate that the transcription factor Foxo1 is upregulated in a TGFß1 dose-dependent manner, serving as a critical regulator that specifically modulates the fate of pathogenic Th17 cells. Analyses in both uveitis patients and an Experimental Autoimmune Uveitis (EAU) mouse model reveal a strong correlation between disease severity and diminished Foxo1 expression levels. Ectopic expression of Foxo1 selectively attenuates IL-17A production under pathogenic Th17-inducing conditions. Moreover, enhanced Foxo1 expression, triggered by TGFß1 signaling, is implicated in fatty acid metabolism pathways that favor non-pathogenic Th17 differentiation. Our drug screening identifies several FDA-approved compounds can upregulate Foxo1. Collectively, our findings offer evidence that Foxo1 serves as a molecular switch to specifically control pathogenic versus non-pathogenic Th17 differentiation in a TGFß1-dependent manner. Suggest that targeting Foxo1 could be a promising therapeutic strategy for autoimmune diseases.

2.
Int Immunopharmacol ; 124(Pt B): 110969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37774484

RESUMEN

Oncolytic viruses are a new class of therapeutic agents for the treatment of cancer that have shown promising results in clinical trials. Oncolytic virus-mediated tumor rejection is highly dependent on viral replication in tumor cells to induce cell death. However, the antiviral immune response of tumor cells limits the replication capacity of oncolytic viruses. We hypothesized that inhibition of the antiviral immune response in infected cells would enhance the antitumor effect. Here, we confirmed that ablation of the key adaptor protein of cellular immunity, STING, significantly suppressed the antiviral immune response and promoted oncolytic herpes simplex virus-1 (oHSV1) proliferation in tumor cells. In a murine pancreatic ductal adenocarcinoma (PDAC) model, oHSV1 enhanced tumor suppression and prolonged the survival of mice in the absence of STING. On this basis, we further found that the TBK1 inhibitor can also significantly enhance the tumor-control ability of oHSV1. Our studies provide a novel strategy for oncolytic virus therapy by inhibiting the intrinsic antiviral response in solid tumors to improve antitumor efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Animales , Ratones , Simplexvirus/genética , Línea Celular Tumoral , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/terapia , Neoplasias Pancreáticas
3.
Fish Shellfish Immunol ; 128: 484-493, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35985629

RESUMEN

Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.


Asunto(s)
Catepsinas , Gadiformes , Animales , Antivirales , Catepsina A/genética , Catepsina B/genética , Catepsina D/genética , Catepsina L/genética , Catepsinas/genética , Gadiformes/genética , Filogenia , Poli I-C/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA