Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(3): e0193230, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29538392

RESUMEN

Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Ha'ena and Ka'upulehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'upulehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Ha'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'upulehu is more vulnerable to land-based nutrients and coral bleaching than Ha'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Ha'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Agua Subterránea/química , Hawaii , Actividades Humanas , Humanos , Modelos Teóricos , Islas del Pacífico
2.
Sci Total Environ ; 616-617: 1668-1688, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248166

RESUMEN

Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas<0.9m NAVD. However, current simulations do not consider the range of rainfall events that have led to water table elevations>1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events.

3.
Nature ; 543(7647): 665-669, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28329771

RESUMEN

Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecología/organización & administración , Animales , Organismos Acuáticos , Biomasa , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Ecología/economía , Peces , Objetivos , Internacionalidad , Dinámica Poblacional , Recursos Humanos
4.
PLoS One ; 11(7): e0158094, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27409584

RESUMEN

Natural habitats have the ability to protect coastal communities against the impacts of waves and storms, yet it is unclear how different habitats complement each other to reduce those impacts. Here, we investigate the individual and combined coastal protection services supplied by live corals on reefs, seagrass meadows, and mangrove forests during both non-storm and storm conditions, and under present and future sea-level conditions. Using idealized profiles of fringing and barrier reefs, we quantify the services supplied by these habitats using various metrics of inundation and erosion. We find that, together, live corals, seagrasses, and mangroves supply more protection services than any individual habitat or any combination of two habitats. Specifically, we find that, while mangroves are the most effective at protecting the coast under non-storm and storm conditions, live corals and seagrasses also moderate the impact of waves and storms, thereby further reducing the vulnerability of coastal regions. Also, in addition to structural differences, the amount of service supplied by habitats in our analysis is highly dependent on the geomorphic setting, habitat location and forcing conditions: live corals in the fringing reef profile supply more protection services than seagrasses; seagrasses in the barrier reef profile supply more protection services than live corals; and seagrasses, in our simulations, can even compensate for the long-term degradation of the barrier reef. Results of this study demonstrate the importance of taking integrated and place-based approaches when quantifying and managing for the coastal protection services supplied by ecosystems.


Asunto(s)
Arrecifes de Coral , Ecosistema , Poaceae , Humedales , Animales , Antozoos , Organismos Acuáticos , Belice , Conservación de los Recursos Naturales , Modelos Biológicos , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...