Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Metabolites ; 13(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37623836

RESUMEN

Amino acids and biogenic amines are important components of food and beverages. In grape-derived products such as wine and wine vinegar, they can have different origins and can influence the odor and taste of the products. Their concentration is influenced by the grape variety, vintage, and winemaking process. In our study, we carried out an LC-MS-based comparative analysis of 22 grape-derived beverages, including three different wine types and four wine vinegar samples from the Tokaj region in Hungary. The concentrations of 23 amino acids and 10 biogenic amines were examined, and the differences among the sample types were analyzed. The differences in the concentrations of some metabolites between Aszú-Furmint pairs originating from the same wineries and year provide information on the effect of botrytized grape on wine composition. Our data can provide further evidence on how the production process shapes the metabolite content of beverages and highlight the nutritional value of wine vinegar.

3.
Front Cell Dev Biol ; 11: 1155673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416800

RESUMEN

Introduction: White adipocytes store lipids, have a large lipid droplet and few mitochondria. Brown and beige adipocytes, which produce heat, are characterized by high expression of uncoupling protein (UCP) 1, multilocular lipid droplets, and large amounts of mitochondria. The rs1421085 T-to-C single-nucleotide polymorphism (SNP) of the human FTO gene interrupts a conserved motif for ARID5B repressor, resulting in adipocyte type shift from beige to white. Methods: We obtained abdominal subcutaneous adipose tissue from donors carrying FTO rs1421085 TT (risk-free) or CC (obesity-risk) genotypes, isolated and differentiated their preadipocytes into beige adipocytes (driven by the PPARγ agonist rosiglitazone for 14 days), and activated them with dibutyryl-cAMP for 4 hours. Then, either the same culture conditions were applied for additional 14 days (active beige adipocytes) or it was replaced by a white differentiation medium (inactive beige adipocytes). White adipocytes were differentiated by their medium for 28 days. Results and Discussion: RNA-sequencing was performed to investigate the gene expression pattern of adipocytes carrying different FTO alleles and found that active beige adipocytes had higher brown adipocyte content and browning capacity compared to white or inactive beige ones when the cells were obtained from risk-free TT but not from obesity-risk CC genotype carriers. Active beige adipocytes carrying FTO CC had lower thermogenic gene (e.g., UCP1, PM20D1, CIDEA) expression and thermogenesis measured by proton leak respiration as compared to TT carriers. In addition, active beige adipocytes with CC alleles exerted lower expression of ASC-1 neutral amino acid transporter (encoded by SLC7A10) and less consumption of Ala, Ser, Cys, and Gly as compared to risk-free carriers. We did not observe any influence of the FTO rs1421085 SNP on white and inactive beige adipocytes highlighting its exclusive and critical effect when adipocytes were activated for thermogenesis.

4.
J Nutr Biochem ; 119: 109385, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230255

RESUMEN

Brown/beige adipocytes express uncoupling protein-1 (UCP1) that enables them to dissipate energy as heat. Systematic activation of this process can alleviate obesity. Human brown adipose tissues are interspersed in distinct anatomical regions including deep neck. We found that UCP1 enriched adipocytes differentiated from precursors of this depot highly expressed ThTr2 transporter of thiamine and consumed thiamine during thermogenic activation of these adipocytes by cAMP which mimics adrenergic stimulation. Inhibition of ThTr2 led to lower thiamine consumption with decreased proton leak respiration reflecting reduced uncoupling. In the absence of thiamine, cAMP-induced uncoupling was diminished but restored by thiamine addition reaching the highest levels at thiamine concentrations larger than present in human blood plasma. Thiamine is converted to thiamine pyrophosphate (TPP) in cells; the addition of TPP to permeabilized adipocytes increased uncoupling fueled by TPP-dependent pyruvate dehydrogenase. ThTr2 inhibition also hampered cAMP-dependent induction of UCP1, PGC1a, and other browning marker genes, and thermogenic induction of these genes was potentiated by thiamine in a concentration-dependent manner. Our study reveals the importance of amply supplied thiamine during thermogenic activation in human adipocytes which provides TPP for TPP-dependent enzymes not fully saturated with this cofactor and by potentiating the induction of thermogenic genes.


Asunto(s)
Adipocitos Marrones , Tiamina , Humanos , Tejido Adiposo Pardo , Proteínas de Transporte de Membrana , Diferenciación Celular , Termogénesis/genética , Proteína Desacopladora 1/genética
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562924

RESUMEN

Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina , Metabolómica , Obesidad
6.
Metabolites ; 12(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35323715

RESUMEN

Metabolomic analysis of different body fluids bears high importance in medical sciences. Our aim was to develop and validate a fast UHPLC-UV method for the analysis of 33 amino acids and biogenic amines from complex biological samples. AccQ-Tag derivatization was conducted on target molecules and the derivatized targets were analyzed by UHPLC-UV. The detection of the analytes was carried out with UV analysis and by Selected Reaction Monitoring (SRM)-based targeted mass spectrometry. The method was validated according to the FDA guidelines. Serum and non-stimulated tear samples were collected from five healthy individuals and the samples were analyzed by the method. The method was successfully validated with appropriate accuracy and precision for all 33 biomolecules. A total of 29 analytes were detected in serum samples and 26 of them were quantified. In the tears, 30 amino acids and biogenic amines were identified and 20 of them were quantified. The developed and validated UHPLC-UV method enables the fast and precise analysis of amino acids and biogenic amines from complex biological samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...