Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396586

RESUMEN

Microplastics (MPs) (0.1 µm-5 mm particles) have been documented in oceans and seas. Bivalve molluscs (BMs) can accumulate MPs and transfer to humans through the food chain. BMs (especially mussels) are used to assess MPs' contamination, but the genus Donax has not been thoroughly investigated. The aim of this study was to detect and characterize MPs in D. trunculus specimens collected along the Tuscan coast (Italy), and to assess the potential risk for consumers. The samples (~10 g of tissue and intervalval liquid from 35 specimens) were digested using a solution of 10% KOH, subjected to NaCl density separation, and filtered through 5 µm pore-size filters. All items were morphologically classified and measured, and their mean abundance (MA) was calculated. Furthermore, 20% of them were analyzed by Raman spectroscopy and, based on the obtained results, the MA was recalculated (corrected MA) and the annual human exposure was estimated. In the 39 samples analyzed, 85 items fibers (n = 45; 52.94%) and fragments (n = 40; 47.06%) were found. The MA was 0.23 ± 0.17 items/grww. Additionally, 83.33% of the items were confirmed as MPs (polyethylene and polyethylene terephthalate). Based on the correct MA (0.18 MPs/grww), D. trunculus consumers could be exposed to 19.2 MPs/per capita/year. The health risk level of MPs was classified as level III (moderate).

2.
ACS Photonics ; 10(9): 3223-3232, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743937

RESUMEN

Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511387

RESUMEN

The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging.


Asunto(s)
Antiinfecciosos , Polihidroxialcanoatos , Embalaje de Alimentos/métodos , Antioxidantes/farmacología , Floretina/farmacología , Biopolímeros , Antiinfecciosos/farmacología
4.
Environ Sci Technol ; 53(15): 9003-9013, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31259538

RESUMEN

Our understanding of the fate and distribution of micro- and nano- plastics in the marine environment is limited by the intrinsic difficulties of the techniques currently used for the detection, quantification, and chemical identification of small particles in liquid (light scattering, vibrational spectroscopies, and optical and electron microscopies). Here we introduce Raman Tweezers (RTs), namely optical tweezers combined with Raman spectroscopy, as an analytical tool for the study of micro- and nanoplastics in seawater. We show optical trapping and chemical identification of sub-20 µm plastics, down to the 50 nm range. Analysis at the single particle level allows us to unambiguously discriminate plastics from organic matter and mineral sediments, overcoming the capacities of standard Raman spectroscopy in liquid, intrinsically limited to ensemble measurements. Being a microscopy technique, RTs also permits one to assess the size and shapes of particles (beads, fragments, and fibers), with spatial resolution only limited by diffraction. Applications are shown on both model particles and naturally aged environmental samples, made of common plastic pollutants, including polyethylene, polypropylene, nylon, and polystyrene, also in the presence of a thin eco-corona. Coupled to suitable extraction and concentration protocols, RTs have the potential to strongly impact future research on micro and nanoplastics environmental pollution, and enable the understanding of the fragmentation processes on a multiscale level of aged polymers.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Poliestirenos , Agua de Mar
5.
Small ; 14(36): e1800890, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30091859

RESUMEN

Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/toxicidad , Proteínas de Escherichia coli/toxicidad , Nanopartículas/química , Pliegue de Proteína , Multimerización de Proteína , Espectrometría Raman/métodos , Pliegue de Proteína/efectos de los fármacos
6.
Materials (Basel) ; 11(3)2018 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-29562606

RESUMEN

Optical forces are used to aggregate plasmonic nanoparticles and create SERS-active hot spots in liquid. When biomolecules are added to the nanoparticles, high sensitivity SERS detection can be accomplished. Here, we pursue studies on Bovine Serum Albumin (BSA) detection, investigating the BSA-nanorod aggregations in a range from 100 µM to 50 nM by combining light scattering, plasmon resonance and SERS, and correlating the SERS signal with the concentration. Experimental data are fitted with a simple model describing the optical aggregation process. We show that BSA-nanorod complexes can be optically printed on non-functionalized glass surfaces, designing custom patterns stable with time. Furthermore, we demonstrate that this methodology can be used to detect catalase and hemoglobin, two Raman resonant biomolecules, at concentrations of 10 nM and 1 pM, respectively, i.e., well beyond the limit of detection of BSA. Finally, we show that nanorods functionalized with specific aptamers can be used to capture and detect Ochratoxin A, a fungal toxin found in food commodities and wine. This experiment represents the first step towards the addition of molecular specificity to this novel biosensor strategy.

7.
Sci Rep ; 6: 26952, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246267

RESUMEN

Strategies for in-liquid molecular detection via Surface Enhanced Raman Scattering (SERS) are currently based on chemically-driven aggregation or optical trapping of metal nanoparticles in presence of the target molecules. Such strategies allow the formation of SERS-active clusters that efficiently embed the molecule at the "hot spots" of the nanoparticles and enhance its Raman scattering by orders of magnitude. Here we report on a novel scheme that exploits the radiation pressure to locally push gold nanorods and induce their aggregation in buffered solutions of biomolecules, achieving biomolecular SERS detection at almost neutral pH. The sensor is applied to detect non-resonant amino acids and proteins, namely Phenylalanine (Phe), Bovine Serum Albumin (BSA) and Lysozyme (Lys), reaching detection limits in the µg/mL range. Being a chemical free and contactless technique, our methodology is easy to implement, fast to operate, needs small sample volumes and has potential for integration in microfluidic circuits for biomarkers detection.


Asunto(s)
Técnicas Biosensibles , Oro/química , Muramidasa/análisis , Nanotubos/química , Fenilalanina/análisis , Albúmina Sérica Bovina/análisis , Espectrometría Raman/métodos , Animales , Bovinos , Pollos , Calefacción , Concentración de Iones de Hidrógeno , Límite de Detección , Nanopartículas del Metal , Nanotubos/ultraestructura , Soluciones , Espectrometría Raman/instrumentación
8.
Anal Bioanal Chem ; 408(5): 1357-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26670770

RESUMEN

Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for surface-enhanced Raman scattering (SERS) analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here, we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.

9.
Nat Nanotechnol ; 8(11): 807-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24202536

RESUMEN

Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate - nanoscale - range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Pinzas Ópticas , Técnicas Biosensibles , Grafito , Luz , Tamaño de la Partícula , Puntos Cuánticos , Semiconductores , Análisis Espectral
10.
ACS Nano ; 7(4): 3522-31, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23530556

RESUMEN

In this article we show that linear nanoantennas can be used as shared substrates for surface-enhanced Raman and infrared spectroscopy (SERS and SEIRS, respectively). This is done by engineering the plasmonic properties of the nanoantennas, so to make them resonant in both the visible (transversal resonance) and the infrared (longitudinal resonance), and by rotating the excitation field polarization to selectively take advantage of each resonance and achieve SERS and SEIRS on the same nanoantennas. As a proof of concept, we have fabricated gold nanoantennas by electron beam lithography on calcium difluoride (1-2 µm long, 60 nm wide, 60 nm high) that exhibit a transverse plasmonic resonance in the visible (640 nm) and a particularly strong longitudinal dipolar resonance in the infrared (tunable in the 1280-3100 cm(-1) energy range as a function of the length). SERS and SEIRS detection of methylene blue molecules adsorbed on the nanoantenna's surface is accomplished, with signal enhancement factors of 5×10(2) for SERS (electromagnetic enhancement) and up to 10(5) for SEIRS. Notably, we find that the field enhancement provided by the transverse resonance is sufficient to achieve SERS from single nanoantennas. Furthermore, we show that by properly tuning the nanoantenna length the signals of a multitude of vibrational modes can be enhanced with SEIRS. This simple concept of plasmonic nanosensor is highly suitable for integration on lab-on-a-chip schemes for label-free chemical and biomolecular identification with optimized performances.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Dispositivos Ópticos , Espectrofotometría Infrarroja/instrumentación , Espectrometría Raman/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo
11.
Nanotechnology ; 22(50): 505704, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22108540

RESUMEN

Silicon nanoparticles obtained by ball-milling of a 50% porosity silicon layer have been optically trapped when dispersed in a water-surfactant environment. We measured the optical force constants using linearly and radially polarized trapping beams finding a reshaping of the optical potential and an enhanced axial spring constant for the latter. These measurements open perspectives for the control and handling of silicon nanoparticles as labeling agents in biological analysis and fluorescence imaging techniques.

12.
Nano Lett ; 11(11): 4879-84, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21967286

RESUMEN

We investigate size-scaling in optical trapping of ultrathin silicon nanowires showing how length regulates their Brownian dynamics, optical forces, and torques. Force and torque constants are measured on nanowires of different lengths through correlation function analysis of their tracking signals. Results are compared with a full electromagnetic theory of optical trapping developed in the transition matrix framework, finding good agreement.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Pinzas Ópticas , Silicio/química , Simulación por Computador , Difusión , Tamaño de la Partícula
13.
ACS Nano ; 5(2): 905-13, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21207989

RESUMEN

We show how light forces can be used to trap gold nanoaggregates of selected structure and optical properties obtained by laser ablation in liquid. We measure the optical trapping forces on nanoaggregates with an average size range 20-750 nm, revealing how the plasmon-enhanced fields play a crucial role in the trapping of metal clusters featuring different extinction properties. Force constants of the order of 10 pN/nmW are detected, the highest measured on a metal nanostructure. Finally, by extending the transition matrix formalism of light scattering theory to the optical trapping of metal nanoaggregates, we show how the plasmon resonances and the fractal structure arising from aggregation are responsible for the increased forces and wider trapping size range with respect to individual metal nanoparticles.

14.
ACS Nano ; 4(12): 7515-23, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21133432

RESUMEN

Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

15.
Dalton Trans ; 39(11): 2903-9, 2010 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-20200718

RESUMEN

We report on the implementation of stainless steel foils coated with dispersed Single Wall Carbon Nanotubes as novel, low cost and highly efficient counter electrodes for dye sensitized solar cells (DSSCs). We use commercially available non purified nanotubes dispersed in water by ultrasonication and drop cast on stainless steel substrates. When implemented on a ruthenium based DSSC we obtain a high short circuit current density (J(sc)= 9.21 mA cm(-2)), a good open circuit voltage (V(oc) = 0.660 V) and a solar energy conversion efficiency of 3.92%. The above cited values are measured under a light flux of 100 mW cm(-2) generated by a solar simulator equipped with a filter AM 1.5. The obtained results are comparable to those attained using a stainless steel counter electrode sputtered with a 2 microm thick platinum film (J(sc) 10.92 mA cm(-2), V(max) = 0.66 V and eta = 4.5%, AM 1.5).

16.
Appl Opt ; 42(15): 2724-9, 2003 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-12777010

RESUMEN

We report optical near-field Raman imaging with subdiffraction resolution (approximately 120 nm) without field enhancement effects. Chemical discrimination on tetracyanoquinodimethane organic thin films showing localized salt complexes is accomplished by detailed Raman maps. Acquisition times that are much shorter than previously reported are due to the high Raman efficiency of the materials and to careful collection and detection of the optical signals in our near-field Raman spectrometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...