Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(22): 7477-7489, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36222896

RESUMEN

The agro-industrial by-products corn steep liquor (CSL) and olive mill wastewater (OMW) were evaluated as low-cost substrates for rhamnolipid production by Burkholderia thailandensis E264. In a culture medium containing CSL (7.5% (v/v)) as sole substrate, B. thailandensis E264 produced 175 mg rhamnolipid/L, which is about 1.3 times the amount produced in the standard medium, which contains glycerol, peptone, and meat extract. When the CSL medium was supplemented with OMW (10% (v/v)), rhamnolipid production further increased up to 253 mg/L in flasks and 269 mg/L in a bioreactor. Rhamnolipids produced in CSL + OMW medium reduced the surface tension up to 27.1 mN/m, with a critical micelle concentration of 51 mg/L, better than the values obtained with the standard medium (28.9 mN/m and 58 mg/L, respectively). However, rhamnolipids produced in CSL + OMW medium displayed a weak emulsifying activity when compared to those produced in the other media. Whereas di-rhamnolipid congeners represented between 90 and 95% of rhamnolipids produced by B. thailandensis E264 in CSL and the standard medium, the relative abundance of mono-rhamnolipids increased up to 55% in the culture medium containing OMW. The difference in the rhamnolipid congeners produced in each medium explains their different surface-active properties. To the best of our knowledge, this is the first report of rhamnolipid production by B. thailandensis using a culture medium containing agro-industrial by-products as sole ingredients. Furthermore, rhamnolipids produced in the different media recovered around 60% of crude oil from contaminated sand, demonstrating its potential application in the petroleum industry and bioremediation. KEY POINTS: • B. thailandensis produced RL using agro-industrial by-products as sole substrates • Purified RL displayed excellent surface activity (minimum surface tension 27mN/m) • Crude RL (cell-free supernatant) recovered 60% of crude oil from contaminated sand.


Asunto(s)
Burkholderia , Petróleo , Análisis Costo-Beneficio , Arena , Glucolípidos , Aguas Residuales , Tensoactivos , Pseudomonas aeruginosa
2.
Biotechnol Adv ; 60: 108013, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35752271

RESUMEN

Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.


Asunto(s)
Bacillus licheniformis , Bacillus , Anaerobiosis , Bacillus licheniformis/metabolismo , Lipopéptidos/química , Lipopéptidos/metabolismo , Oxígeno , Tensoactivos
3.
Polymers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616373

RESUMEN

Microbial exopolysaccharides (EPS) are promising alternatives to synthetic polymers in a variety of applications. Their high production costs, however, limit their use despite their outstanding properties. The use of low-cost substrates such as agro-industrial wastes in their production, can help to boost their market competitiveness. In this work, an alternative low-cost culture medium (CSLM) was developed for EPS production by Rhizobium viscosum CECT908, containing sugarcane molasses (60 g/L) and corn steep liquor (10 mL/L) as sole ingredients. This medium allowed the production of 6.1 ± 0.2 g EPS/L, twice the amount produced in the standard medium (Syn), whose main ingredients were glucose and yeast extract. This is the first report of EPS production by R. viscosum using agro-industrial residues as sole substrates. EPSCSLM and EPSSyn exhibited a similar carbohydrate composition, mainly 4-linked galactose, glucose and mannuronic acid. Although both EPS showed a good fit to the Herschel-Bulkley model, EPSCSLM displayed a higher yield stress and flow consistency index when compared with EPSSyn, due to its higher apparent viscosity. EPSCSLM demonstrated its potential use in Microbial Enhanced Oil Recovery by enabling the recovery of nearly 50% of the trapped oil in sand-pack column experiments using a heavy crude oil.

4.
Appl Microbiol Biotechnol ; 105(23): 8881-8893, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34724083

RESUMEN

The world economy is currently moving towards more sustainable approaches. Lignocellulosic biomass has been widely used as a substitute for fossil sources since it is considered a low-cost bio-renewable resource due to its abundance and continuous production. Compost habitats presenting high content of lignocellulosic biomass are considered a promising source of robust lignocellulose-degrading enzymes. Recently, several novel biocatalysts from different environments have been identified using metagenomic techniques. A key point of the metagenomics studies is the extraction and purification of nucleic acids. Nevertheless, the isolation of high molecular weight DNA from soil-like samples, such as compost, with the required quality for metagenomic approaches remains technically challenging, mainly due to the complex composition of the samples and the presence of contaminants like humic substances. In this work, a rapid and cost-effective protocol for metagenomic DNA extraction from compost samples composed of lignocellulosic residues and containing high content of humic substances was developed. The metagenomic DNA was considered as representative of the global environment and presented high quality (> 99% of humic acids effectively removed) and sufficient quantity (10.5-13.8 µg g-1 of compost) for downstream applications, namely functional metagenomic studies. The protocol takes about 4 h of bench work, and it can be performed using standard molecular biology equipment and reagents available in the laboratory. KEY POINTS/HIGHLIGHTS: • Metagenomic DNA was successfully extracted from compost samples rich in humic acids • The improved protocol was established by optimizing the cell lysis method and buffer • Complete removal of humic acids was achieved through the use of activated charcoal • The suitability of the DNA was proven by the construction of a metagenomic library.


Asunto(s)
Compostaje , Metagenómica , ADN/genética , Sustancias Húmicas/análisis , Lignina , Suelo
5.
Front Microbiol ; 12: 618270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489874

RESUMEN

Biosorbent materials are effective in the removal of spilled oil from water, but their effect on hydrocarbonoclastic bacteria is not known. Here, we show that corksorb, a cork-based biosorbent, enhances growth and alkane degradation by Rhodococcus opacus B4 (Ro) and Alcanivorax borkumensis SK2 (Ab). Ro and Ab degraded 96 ± 1% and 72 ± 2%, respectively, of a mixture of n-alkanes (2 g L-1) in the presence of corksorb. These values represent an increase of 6 and 24%, respectively, relative to the assays without corksorb. The biosorbent also increased the growth of Ab by 51%. However, no significant changes were detected in the expression of genes involved in alkane uptake and degradation in the presence of corksorb relative to the control without the biosorbent. Nevertheless, transcriptomics analysis revealed an increased expression of rRNA and tRNA coding genes, which confirms the higher metabolic activity of Ab in the presence of corksorb. The effect of corksorb is not related to the release of soluble stimulating compounds, but rather to the presence of the biosorbent, which was shown to be essential. Indeed, scanning electron microscopy images and downregulation of pili formation coding genes, which are involved in cell mobility, suggest that cell attachment on corksorb is a determinant for the improved activity. Furthermore, the existence of native alkane-degrading bacteria in corksorb was revealed, which may assist in situ bioremediation. Hence, the use of corksorb in marine oil spills may induce a combined effect of sorption and stimulated biodegradation, with high potential for enhancing in situ bioremediation processes.

6.
Int J Biol Macromol ; 186: 788-799, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34245738

RESUMEN

A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear ß(2 â†’ 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.


Asunto(s)
Fructanos/aislamiento & purificación , Paenibacillus/metabolismo , Petróleo/microbiología , Conformación de Carbohidratos , Fraccionamiento Químico , Calor , Relación Estructura-Actividad , Vitrificación
7.
Molecules ; 26(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201182

RESUMEN

Most biosurfactants are obtained using costly culture media and purification processes, which limits their wider industrial use. Sustainability of their production processes can be achieved, in part, by using cheap substrates found among agricultural and food wastes or byproducts. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of surfactin production by Bacillus subtilis #309. The culture medium containing soap-derived waste glycerol led to the best surfactin production, reaching about 2.8 g/L. To the best of our knowledge, this is the first report describing surfactin production by B. subtilis using stearin and soap wastes as carbon sources. A complete chemical characterization of surfactin analogs produced from the different waste glycerol samples was performed by liquid chromatography-mass spectrometry (LC-MS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the surfactin produced in the study exhibited good stability in a wide range of pH, salinity and temperatures, suggesting its potential for several applications in biotechnology.


Asunto(s)
Bacillus subtilis/química , Glicerol/química , Tensoactivos/química , Biotecnología/métodos , Carbono/química , Cromatografía Liquida/métodos , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Espectrometría de Masas/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura
8.
Int J Food Microbiol ; 348: 109207, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-33930837

RESUMEN

Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.


Asunto(s)
Aflatoxinas/biosíntesis , Aspergillus flavus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Glucolípidos/farmacología , Vías Biosintéticas/efectos de los fármacos , Productos Agrícolas , Genes Fúngicos/genética , Humanos , Hifa/efectos de los fármacos , Microscopía Electrónica de Transmisión , Pseudomonas aeruginosa/metabolismo
9.
Appl Biochem Biotechnol ; 193(2): 589-605, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33043398

RESUMEN

The potential use of alternative culture media towards the development of a sustainable bioprocess to produce lipases by Diutina rugosa is clearly demonstrated. First, a synthetic medium containing glucose, peptone, yeast extract, oleic acid, and ammonium sulfate was proposed, with lipase activity of 143 U/L. Then, alternative culture media formulated with agro-industrial residues, such as molasses, corn steep liquor (CSL), and olive mill waste (OMW), were investigated. An experimental design was conducted, and only CSL concentration was found to have a positive effect in lipase production. The highest lipase activity (561 U/L) was produced on a mixture of molasses (5 g/L), CSL (6 g/L), OMW (0.5% v/v), 0.5 g/L of ammonium sulfate, and 3 g/L of peptone at 24 h of cultivation. Lipase production was also carried out in a 1-L bioreactor leading to a slightly higher lipase activity at 24 h of cultivation. The semi-purified enzyme exhibits an optimum temperature and pH of 40 °C and 7.0, respectively. Finally, the media cost per unit of lipase produced (UPC) was influenced by the medium components, specially by the inducer used. The lowest UPC was obtained when the agro-industrial residues were combined and used at the improved concentrations.


Asunto(s)
Reactores Biológicos , Proteínas Fúngicas/biosíntesis , Microbiología Industrial , Lipasa/biosíntesis , Saccharomycetales/enzimología , Eliminación de Residuos Líquidos , Medios de Cultivo
10.
Bioresour Bioprocess ; 8(1): 128, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38650193

RESUMEN

Zymomonas mobilis is a well-recognized ethanologenic bacterium with outstanding characteristics which make it a promising platform for the biotechnological production of relevant building blocks and fine chemicals compounds. In the last years, research has been focused on the physiological, genetic, and metabolic engineering strategies aiming at expanding Z. mobilis ability to metabolize lignocellulosic substrates toward biofuel production. With the expansion of the Z. mobilis molecular and computational modeling toolbox, the potential of this bacterium as a cell factory has been thoroughly explored. The number of genomic, transcriptomic, proteomic, and fluxomic data that is becoming available for this bacterium has increased. For this reason, in the forthcoming years, systems biology is expected to continue driving the improvement of Z. mobilis for current and emergent biotechnological applications. While the existing molecular toolbox allowed the creation of stable Z. mobilis strains with improved traits for pinpointed biotechnological applications, the development of new and more flexible tools is crucial to boost the engineering capabilities of this bacterium. Novel genetic toolkits based on the CRISPR-Cas9 system and recombineering have been recently used for the metabolic engineering of Z. mobilis. However, they are mostly at the proof-of-concept stage and need to be further improved.

11.
Colloids Surf B Biointerfaces ; 185: 110598, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683205

RESUMEN

The interactions between two types of quaternary ammonium surfactants (N,N,N-trimethyl-2-(dodecanoyloxy)ethaneammonium bromide (DMM-11) and N,N,N-trimethyl-2-(dodecanoyloxy)propaneammonium bromide (DMPM-11)) and hen egg white lysozyme were studied through several techniques, including isothermal titration calorimetry (ITC), circular dichroism (CD) and fluorescence spectroscopy, and surface tension measurement. The average number of surfactants interacting with each molecule of lysozyme was calculated from the biophysical results. Moreover, the CD results showed that the conformation of lysozyme changed in the presence of DMM-11 and DMPM-11. The studies drew a detailed picture on the physicochemical nature of interactions between both surfactants and lysozyme. Both DMM-11 and DMPM-11, with and without lysozyme were studied against three target microorganisms, including Gram-negative (Escherichia coli) and Gram-positive (Enterococcus hirae and Enterococcus faecalis) bacteria. The results revealed a broad spectrum of antibacterial nature of surfactant/lysozyme complexes, as well as their effect on the membrane damage, hence providing the basis to further explore DMM-11 and DMPM-11 combined with lysozyme as possible antibacterial tools.


Asunto(s)
Bacterias/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Muramidasa/química , Compuestos de Amonio Cuaternario/farmacología , Tensoactivos/farmacología , Animales , Supervivencia Celular , Clara de Huevo/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química
12.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212764

RESUMEN

Studies on the specific and nonspecific interactions of biosurfactants with proteins are broadly relevant given the potential applications of biosurfactant/protein systems in pharmaceutics and cosmetics. The aim of this study was to evaluate the interactions of divalent counterions with the biomolecular anionic biosurfactant surfactin-C15 through molecular modeling, surface tension and dynamic light scattering (DLS), with a specific focus on its effects on biotherapeutic formulations. The conformational analysis based on a semi-empirical approach revealed that Cu2+ ions can be coordinated by three amide nitrogens belonging to the surfactin-C15 cycle and one oxygen atom of the aspartic acid from the side chain of the lipopeptide. Backbone oxygen atoms mainly involve Zn2+, Ca2+ and Mg2+. Subsequently, the interactions between metal-coordinated lipopeptide complexes and bovine serum albumin (BSA) were extensively investigated by fluorescence spectroscopy and molecular docking analysis. Fluorescence results showed that metal-lipopeptide complexes interact with BSA through a static quenching mechanism. Molecular docking results indicate that the metal-lipopeptide complexes are stabilized by hydrogen bonding and van der Waals forces. The biosurfactant-protein interaction properties herein described are of significance for metal-based drug discovery hypothesizing that the association of divalent metal ions with surfactin allows its interaction with bacteria, fungi and cancer cell membranes with effects that are similar to those of the cationic peptide antibiotics.


Asunto(s)
Complejos de Coordinación/química , Metales/química , Tensoactivos/química , Animales , Bovinos , Complejos de Coordinación/metabolismo , Lipopéptidos/química , Lipopéptidos/metabolismo , Metales/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Tensión Superficial , Tensoactivos/metabolismo , Termodinámica
13.
Methods Mol Biol ; 1995: 383-393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148140

RESUMEN

Biosurfactants, surface active molecules synthesized by microorganisms, represent a promising alternative to the synthetic surfactants in many different applications. Among them, rhamnolipids have attracted considerable attention in the last years due to their extraordinary surface-active properties and biological activities. Rhamnolipids are usually synthesized by the gram-negative bacterium Pseudomonas aeruginosa as complex mixtures of different congeners. In this chapter, we describe the most common techniques that can be used for the production, recovery and purification of rhamnolipids, using two sequential chromatographic techniques to recover and separate the monorhamnolipid and dirhamnolipid congeners.


Asunto(s)
Glucolípidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Tensoactivos/metabolismo , Técnicas de Cultivo de Célula/métodos , Cromatografía en Capa Delgada/métodos , Glucolípidos/análisis , Glucolípidos/aislamiento & purificación , Microbiología Industrial/métodos , Aceites de Plantas/química , Plantas/química , Pseudomonas aeruginosa/química , Tensoactivos/análisis , Tensoactivos/aislamiento & purificación
14.
Int J Biol Macromol ; 126: 1177-1185, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625357

RESUMEN

The molecular interactions between two single-chain lysosomotropic surfactants DMM-11 (2-Dodecanoyloxyethyl)trimethylammonium bromide) and DMPM-11 (2-Dodecanoyloxypropyl)trimethylammonium bromide) with a small heme-protein (cytochrome c (cyt-c)) in Hepes buffer (pH = 7.4) were extensively investigated by surface tension, dynamic light scattering (DLS), circular dichroism (CD) and fluorescence spectroscopy in combination with molecular dynamic simulation techniques. The results demonstrated that surfactants can destroy the hydrophobic cavity of cyt-c, make the α-helical become loose and convert it into the ß-sheet structure. The interactions between surfactants and cyt-c are mainly hydrophobic. Molecular modelling approaches were also used to gather a deeper insight on the binding of lysosomotropic surfactants with cyt-c and the in silico results were found to be in good agreement with the experimental ones. This study provides a molecular basis for the applications of protein-surfactant complexes in biological, food, pharmaceutical, industrial and cosmetic systems.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Lisosomas/metabolismo , Tensoactivos/metabolismo , Fenómenos Biofísicos , Dicroismo Circular , Dispersión Dinámica de Luz , Enlace de Hidrógeno , Conformación Proteica , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Tensión Superficial , Factores de Tiempo
15.
N Biotechnol ; 49: 144-150, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30445186

RESUMEN

Polymer flooding is one of the most promising techniques used to increase the productivity of mature oil reservoirs. Polymers reduce the mobility ratio of the injected water relative to the crude oil, improving the displacement of the entrapped oil and consequently, increasing oil recovery. Biopolymers such as xanthan gum have emerged as environmentally friendly alternatives to the chemical polymers commonly employed by the oil industry. However, in order to seek more efficient biomolecules, alternative biopolymers must be studied. Here, the applicability of a biopolymer produced by Rhizobium viscosum CECT 908 in Microbial Enhanced Oil Recovery (MEOR) was evaluated. This biopolymer exhibited better rheological properties (including higher viscosity) when compared with xanthan gum. Its stability at high shear rates (up to 300 s-1), temperatures (up to 80 °C) and salinities (up to 200 g/L of NaCl) was also demonstrated. The biopolymer exhibited better performance than xanthan gum in oil recovery assays performed with a heavy crude oil, achieving 25.7 ± 0.5% of additional recovery. Thus the R. viscosum CECT 908 biopolymer is a promising candidate for application in MEOR.


Asunto(s)
Biopolímeros/biosíntesis , Aceites/aislamiento & purificación , Rhizobium/metabolismo , Reología , Resistencia al Corte , Temperatura , Factores de Tiempo , Viscosidad
16.
J Hazard Mater ; 346: 152-158, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29268161

RESUMEN

In this work, biosurfactant production by Wickerhamomyces anomalus CCMA 0358 was increased through the development of an optimized culture medium using response surface methodology. The optimized culture medium contained yeast extract (4.64 g/L), ammonium sulfate (4.22 g/L), glucose (1.39 g/L) and olive oil (10 g/L). Biosurfactant production using this medium was validated both in flasks and bioreactor, and the surface tension was reduced from 49.0 mN/m up to 31.4 mN/m and 29.3 mN/m, respectively. In both cases, the highest biosurfactant production was achieved after 24 h of growth. W. anomalus CCMA 0358 demonstrated to be a fast biosurfactant producer (24 h) as compared to other yeast strains previously reported (144-240 h). The produced biosurfactant remained stable at high temperature (121 °C), NaCl concentrations as high as 300 g/L, and pH values between 6 and 12. The crude biosurfactant allowed the recovery of 20% of crude oil from contaminated sand, being a promising candidate for application in bioremediation or in the petroleum industry.


Asunto(s)
Contaminantes Ambientales/química , Petróleo , Saccharomycetales/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Reactores Biológicos , Restauración y Remediación Ambiental , Concentración de Iones de Hidrógeno , Salinidad , Tensión Superficial , Temperatura
17.
Sci Rep ; 7(1): 12907, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018256

RESUMEN

In this work, the antifungal activity of rhamnolipids produced by Pseudomonas aeruginosa #112 was evaluated against Aspergillus niger MUM 92.13 and Aspergillus carbonarius MUM 05.18. It was demonstrated that the di-rhamnolipid congeners were responsible for the antifungal activity exhibited by the crude rhamnolipid mixture, whereas mono-rhamnolipids showed a weak inhibitory activity. Furthermore, in the presence of NaCl (from 375 mM to 875 mM), the antifungal activity of the crude rhamnolipid mixture and the purified di-rhamnolipids was considerably increased. Dynamic Light Scattering studies showed that the size of the structures formed by the rhamnolipids increased as the NaCl concentration increased, being this effect more pronounced in the case of di-rhamnolipids. These results were confirmed by Confocal Scanning Laser Microscopy, which revealed the formation of giant vesicle-like structures (in the µm range) by self-assembling of the crude rhamnolipid mixture in the presence of 875 mM NaCl. In the case of the purified mono- and di-rhamnolipids, spherical structures (also in the µm range) were observed at the same conditions. The results herein obtained demonstrated a direct relationship between the rhamnolipids antifungal activity and their aggregation behaviour, opening the possibility to improve their biological activities for application in different fields.


Asunto(s)
Antifúngicos/farmacología , Glucolípidos/química , Glucolípidos/farmacología , Cloruro de Sodio/farmacología , Aspergillus/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Glucolípidos/aislamiento & purificación , Micelas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos
18.
Colloids Surf B Biointerfaces ; 159: 750-758, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28886512

RESUMEN

The interactions between two cationic lysosomotropic surfactants (2-dodecanoyloxyethyl)trimethylammonium bromide (DMM-11) and (2-dodecanoyloxypropyl)trimethylammonium bromide (DMPM-11) with bovine serum albumin (BSA) in Hepes buffer (pH=7.4) were systematically studied by surface tension, fluorescence and circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). Furthermore, the size of the micellar aggregates and the polydispersity indexes of both cationic surfactants were studied by dynamic light scattering technique (DLS). The hydrodynamic radii, micellar volumes and aggregation numbers were calculated using a method based on density functional theory (DFT). The results showed that, in both cases, the surface tension was modified upon addition of BSA, and the critical micelle concentration (CMC) values of DMM-11 and DMPM-11 were higher in the presence of BSA. The fluorescence intensity of BSA decreased significantly as the concentration of both cationic surfactants increased and this effect was attributed to the formation of surfactant-BSA complexes. Synchronous fluorescence spectrometry showed the binding-induced conformational changes in BSA. Finally, CD and DLS results revealed the occurrence of changes in the secondary structure of the protein in the presence of both surfactants. In conclusion, understanding the interactions between lysosomotropic surfactants and BSA is required to explore their potential applications in medicine.


Asunto(s)
Micelas , Albúmina Sérica Bovina/química , Tensoactivos/química , Animales , Calorimetría , Bovinos , Dicroismo Circular , Dispersión Dinámica de Luz , Termodinámica
19.
Microbiol Res ; 204: 40-47, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28870290

RESUMEN

In this study, the biosurfactant production by an Aureobasidium thailandense LB01 was reported for the first time. Different agro-industrial by-products (corn steep liquor, sugarcane molasses, and olive oil mill wastewater) were evaluated as alternative low-cost substrates. The composition of the culture medium was optimized through response surface methodology. The highest biosurfactant production (139±16mg/L) was achieved using a culture medium containing yeast extract (2g/L); olive oil mill wastewater (1.5%, w/w); glucose (6g/L) and KH2PO4 (1g/L) after 48h of fermentation. The partially purified biosurfactant exhibited a critical micelle concentration of 550mg/L, reducing the surface tension of water up to 31.2mN/m. Its molecular structure was found to be similar to a lauric acid ester. The biosurfactant exhibited a better performance than the chemical surfactant sodium dodecyl sulfate (SDS) in oil dispersion assays, thus suggesting its potential application in bioremediation.


Asunto(s)
Ascomicetos/metabolismo , Aceite de Oliva/metabolismo , Tensoactivos/metabolismo , Ascomicetos/crecimiento & desarrollo , Biodegradación Ambiental , Medios de Cultivo/química , Fermentación , Dodecil Sulfato de Sodio/química , Tensión Superficial , Tensoactivos/química , Tensoactivos/aislamiento & purificación , Aguas Residuales , Agua
20.
Colloids Surf B Biointerfaces ; 154: 373-382, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28376391

RESUMEN

In this work, biosurfactant production by several yeast strains was evaluated using different culture media. The best results were obtained with the strain Wickerhamomyces anomalus CCMA 0358 growing in a culture medium containing glucose (1g/L) and olive oil (20g/L) as carbon sources. This strain produced 2.6g of biosurfactant per liter after 24h of growth. The crude biosurfactant reduced the surface tension of water to values around 31mN/m, and its critical micelle concentration was 0.9mg/mL. This biosurfactant was characterized through mass spectrometry (MS), and nuclear magnetic resonance (NMR) as a mixture of two different glycolipids, comprising a sugar moiety linked to one or three molecules of oleic acid. To the best of our knowledge, these biosurfactants are structurally different from those previously reported. Furthermore, the crude biosurfactant exhibited antimicrobial activity against several microorganisms, including the pathogens Candida albicans, Escherichia coli, Staphylococcus epidermidis and Streptococcus agalactiae, which opens the possibility for its use in several biomedical applications.


Asunto(s)
Antiinfecciosos/metabolismo , Saccharomycetales/metabolismo , Tensoactivos/metabolismo , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Medios de Cultivo/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fermentación , Glucosa/metabolismo , Micelas , Pruebas de Sensibilidad Microbiana , Aceite de Oliva/metabolismo , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/crecimiento & desarrollo , Tensión Superficial , Tensoactivos/farmacología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...