Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593434

RESUMEN

Precise control over polymer microstructure can enable the molecular tunability of material properties and represents a significant challenge in polymer chemistry. Stereoblock copolymers are some of the simplest stereosequenced polymers, yet the synthesis of stereoblock polyesters from prochiral or racemic monomers outside of "simple" isotactic stereoblocks remains limited. Herein, we report the development of irreversible chain-transfer ring-opening polymerization (ICT-ROP), which overcomes the fundamental limitations of single catalyst approaches by using transmetalation (e.g., alkoxide-chloride exchange) between two catalysts with distinct stereoselectivities as a means to embed temporally controlled multicatalysis in ROP. Our combined small-molecule model and catalytic polymerization studies lay out a clear molecular basis for ICT-ROP and are exploited to access the first examples of atactic-syndiotactic stereoblock (at-sb-st) polyesters, at-sb-st polyhydroxyalkanoates (PHAs). We achieve high levels of control over molecular weight, tacticity, monomer composition, and block structures in a temporally controlled manner and demonstrate that stereosequence control leads to polymer tensile properties that are independent of thermal properties.

2.
Nano Lett ; 18(9): 5752-5759, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30103601

RESUMEN

We present an experimental approach for in situ measurement of elastic modulus of the solid electrolyte interphase (SEI), which is formed from reactions between a lithium thin-film [on a polydimethylsiloxane (PDMS) substrate] and a room-temperature ionic liquid (RTIL) electrolyte. The SEI forms under a state of compressive stress, which causes buckling of the sample surface. In situ atomic force microscopy is used to measure the dominant wavelength of the wrinkled surface topography. A mechanics analysis of strain-induced elastic buckling instability of a stiff thin film on a soft substrate is used to determine the plane strain modulus of the SEI from the measured wavelength. The measurements are performed for three RTIL electrolytes: 1-butyl 1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (P14 TFSI) without any lithium salt, 1.0 M lithium bis(trifluoromethylsulfonyl)imide (Li TFSI) in P14 TFSI, and 1.0 M lithium bis(fluorosulfonyl)imide (Li FSI) in P14 TFSI to investigate the influence of lithium salts on the plane strain modulus of the SEI. The measurements yield plane-strain moduli of approximately 1.3 GPa for no-salt P14 TFSI and approximately 1.6 GPa for 1.0 M Li TFSI in P14 TFSI and 1.0 M Li FSI in P14 TFSI. The experimental technique presented here eliminates some of the uncertainties associated with traditional SEI mechanical characterization approaches and offers a platform to engineer an SEI with desired mechanical properties by approaches that include altering the electrolyte composition.

3.
ACS Appl Mater Interfaces ; 8(19): 12211-20, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27135935

RESUMEN

The effects of different binders, polyvinylidene difluoride (PVdF), poly(acrylic acid) (PAA), sodium carboxymethyl cellulose (CMC), and cross-linked PAA-CMC (c-PAA-CMC), on the cycling performance and solid electrolyte interphase (SEI) formation on silicon nanoparticle electrodes have been investigated. Electrodes composed of Si-PAA, Si-CMC, and Si-PAA-CMC exhibit a specific capacity ≥3000 mAh/g after 20 cycles while Si-PVdF electrodes have a rapid capacity fade to 1000 mAh/g after just 10 cycles. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) reveal that PAA and CMC react with the surface of the Si nanoparticles during electrode fabrication. The fresh Si-CMC electrode has a thicker surface coating of SiOx than Si-PAA and Si-PAA-CMC electrodes, due to the formation of thicker SiOx during electrode preparation, which leads to lower cyclability. The carboxylic acid functional groups of the PAA binder are reactive toward the electrolyte, causing the decomposition of LiPF6 and dissolution of SiOx during the electrode wetting process. The PAA and CMC binder surface films are then electrochemically reduced during the first cycle to form a protective layer on Si. This layer effectively suppresses the decomposition of carbonate solvents during cycling resulting in a thin SEI. On the contrary, the Si-PVDF electrode has poor cycling performance and continuous reduction of carbonate solvents is observed resulting in the generation of a thicker SEI. Interestingly, the Lewis basic -CO2Na of CMC was found to scavenge HF in electrolyte.

4.
Angew Chem Int Ed Engl ; 55(21): 6175-81, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27079940

RESUMEN

Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity.

5.
ACS Appl Mater Interfaces ; 6(7): 4678-83, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24640970

RESUMEN

Silicon (Si) is a promising candidate for lithium ion battery anodes because of its high theoretical capacity. However, the large volume changes during lithiation/delithiation cycles result in pulverization of Si, leading to rapid fading of capacity. Here, we report a simple fabrication technique that is designed to overcome many of the limitations that deter more widespread adoption of Si based anodes. We confine Si nanoparticles in the oil phase of an oil-in-water emulsion stabilized by carbon black (CB). These CB nanoparticles are both oil- and water-wettable. The hydrophilic/hydrophobic balance for the CB nanoparticles also causes them to form a network in the continuous aqueous phase. Upon drying this emulsion on a current collector, the CB particles located at the surfaces of the emulsion droplets form mesoporous cages that loosely encapsulate the Si particles that were in the oil. The CB particles that were in the aqueous phase form a conducting network connected to the CB cages. The space within the cages allows for Si particle expansion without transmitting stresses to the surrounding carbon network. Half-cell experiments using this Si/CB anode architecture show a specific capacity of ∼1300 mAh/g Si + C and a Coulombic efficiency of 97.4% after 50 cycles. Emulsion-templating is a simple, inexpensive processing strategy that directs Si and conducts CB particles to desired spatial locations for superior performance of anodes in lithium ion batteries.

6.
J Anat ; 216(1): 121-31, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20402827

RESUMEN

The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling.


Asunto(s)
Huesos/fisiología , Actividad Motora/fisiología , Selección Genética , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Índice de Masa Corporal , Cruzamiento , Fuerza Compresiva , Femenino , Ratones , Ratones Endogámicos ICR , Modelos Animales , Reproducibilidad de los Resultados , Microtomografía por Rayos X/métodos
7.
J R Soc Interface ; 5(28): 1363-70, 2008 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-18381255

RESUMEN

Previous studies have emphasized that the adhesion strength between solid objects tends to increase as the characteristic size of the objects decreases and eventually saturates at the theoretical adhesion strength below a critical size scale. Here we show that the adhesion strength between two spheres or between a sphere and a solid half-space actually exhibits a peak value at an optimal size. This optimal size arises owing to a transition between surface- and bulk-dominated interaction regimes at the nanoscale.


Asunto(s)
Modelos Teóricos , Nanosferas/química , Adhesividad , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...