Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone ; 155: 116263, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34826632

RESUMEN

Many key signaling molecules used to build tissues during embryonic development are re-activated at injury sites to stimulate tissue regeneration and repair. Bone morphogenetic proteins provide a classic example, but the mechanisms that lead to reactivation of BMPs following injury are still unknown. Previous studies have mapped a large "injury response element" (IRE) in the mouse Bmp5 gene that drives gene expression following bone fractures and other types of injury. Here we show that the large mouse IRE region is also activated in both zebrafish tail resection and mechanosensory hair cell injury models. Using the ability to test multiple constructs and image temporal and spatial dynamics following injury responses, we have narrowed the original size of the mouse IRE region by over 100 fold and identified a small 142 bp minimal enhancer that is rapidly induced in both mesenchymal and epithelial tissues after injury. These studies identify a small sequence that responds to evolutionarily conserved local signals in wounded tissues and suggest candidate pathways that contribute to BMP reactivation after injury.


Asunto(s)
Proteínas Morfogenéticas Óseas , Pez Cebra , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo Embrionario , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Pez Cebra/genética
2.
Elife ; 72018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30499775

RESUMEN

Vertebrate pelvic reduction is a classic example of repeated evolution. Recurrent loss of pelvic appendages in sticklebacks has previously been linked to natural mutations in a pelvic enhancer that maps upstream of Pitx1. The sequence of this upstream PelA enhancer is not conserved to mammals, so we have surveyed a large region surrounding the mouse Pitx1 gene for other possible hind limb control sequences. Here we identify a new pelvic enhancer, PelB, that maps downstream rather than upstream of Pitx1. PelB drives expression in the posterior portion of the developing hind limb, and deleting the sequence from mice alters the size of several hind limb structures. PelB sequences are broadly conserved from fish to mammals. A wild stickleback population lacking the pelvis has an insertion/deletion mutation that disrupts the structure and function of PelB, suggesting that changes in this ancient enhancer contribute to evolutionary modification of pelvic appendages in nature.


Asunto(s)
Evolución Biológica , Elementos de Facilitación Genéticos , Factores de Transcripción Paired Box/genética , Pelvis/crecimiento & desarrollo , Vertebrados/crecimiento & desarrollo , Vertebrados/genética , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/metabolismo , Secuencia Conservada , Peces/embriología , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , Genoma , Miembro Posterior/crecimiento & desarrollo , Lagartos/embriología , Ratones , Factores de Transcripción Paired Box/metabolismo , Eliminación de Secuencia
3.
Cell ; 164(1-2): 45-56, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26774823

RESUMEN

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Asunto(s)
Evolución Biológica , Evolución Molecular , Factor 6 de Diferenciación de Crecimiento/genética , Esqueleto/fisiología , Vertebrados/genética , Adaptación Fisiológica , Animales , Elementos de Facilitación Genéticos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Agua Dulce , Factor 6 de Diferenciación de Crecimiento/metabolismo , Humanos , Sitios de Carácter Cuantitativo , Agua de Mar , Esqueleto/anatomía & histología , Smegmamorpha/genética , Smegmamorpha/fisiología , Especificidad de la Especie , Vertebrados/clasificación , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo
4.
Bone ; 77: 31-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25886903

RESUMEN

Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals.


Asunto(s)
Proteína Morfogenética Ósea 5/genética , Fracturas Óseas/genética , Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Traumatismos de los Tejidos Blandos/genética , Animales , Humanos , Masculino , Ratones Transgénicos
5.
Cell Rep ; 8(6): 1659-1667, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25220463

RESUMEN

Phosphate concentration is tightly regulated at the cellular and organismal levels. The first metazoan phosphate exporter, XPR1, was recently identified, but its in vivo function remains unknown. In a genetic screen, we identified a mutation in a zebrafish ortholog of human XPR1, xpr1b. xpr1b mutants lack microglia, the specialized macrophages that reside in the brain, and also displayed an osteopetrotic phenotype characteristic of defects in osteoclast function. Transgenic expression studies indicated that xpr1b acts autonomously in developing macrophages. xpr1b mutants display no gross developmental defects that may arise from phosphate imbalance. We constructed a targeted mutation of xpr1a, a duplicate of xpr1b in the zebrafish genome, to determine whether Xpr1a and Xpr1b have redundant functions. Single mutants for xpr1a were viable, and double mutants for xpr1b;xpr1a were similar to xpr1b single mutants. Our genetic analysis reveals a specific role for the phosphate exporter Xpr1 in the differentiation of tissue macrophages.


Asunto(s)
Diferenciación Celular , Macrófagos/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Desarrollo Óseo , Remodelación Ósea , Encéfalo/metabolismo , Embrión no Mamífero/metabolismo , Humanos , Macrófagos/metabolismo , Microglía/citología , Microglía/metabolismo , Mutación , Fenotipo , Fosfatos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Receptor de Retrovirus Xenotrópico y Politrópico , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Nat Genet ; 46(7): 748-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24880339

RESUMEN

Hair color differences are among the most obvious examples of phenotypic variation in humans. Although genome-wide association studies (GWAS) have implicated multiple loci in human pigment variation, the causative base-pair changes are still largely unknown. Here we dissect a regulatory region of the KITLG gene (encoding KIT ligand) that is significantly associated with common blond hair color in northern Europeans. Functional tests demonstrate that the region contains a regulatory enhancer that drives expression in developing hair follicles. This enhancer contains a common SNP (rs12821256) that alters a binding site for the lymphoid enhancer-binding factor 1 (LEF1) transcription factor, reducing LEF1 responsiveness and enhancer activity in cultured human keratinocytes. Mice carrying ancestral or derived variants of the human KITLG enhancer exhibit significant differences in hair pigmentation, confirming that altered regulation of an essential growth factor contributes to the classic blond hair phenotype found in northern Europeans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Estudio de Asociación del Genoma Completo , Color del Cabello/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Polimorfismo de Nucleótido Simple/genética , Factor de Células Madre/genética , Población Blanca/genética , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pigmentación de la Piel/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...