Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 3045, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650210

RESUMEN

As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we describe the first study of the vulnerability of these directional links to jamming, in which we identify several features that are distinct from the usual considerations of jamming at low frequencies. We show that the receiver's use of an envelope detector provides the jammer with the ability to thwart active attempts to adapt to their attack. In addition, a jammer can exploit the broadband nature of typical receivers to implement a beat jamming attack, which allows them to optimize the efficacy of the interference even if their broadcast is detuned from the frequency of the intended link. Our work quantifies the increasing susceptibility of broadband receivers to jamming, revealing previously unidentified vulnerabilities which must be considered in the development of future wireless systems operating above 100 GHz.

2.
Sci Rep ; 12(1): 10971, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768465

RESUMEN

One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver's angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.

3.
Opt Express ; 29(13): 20240-20249, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266117

RESUMEN

We demonstrate a bar code sensing system for the THz region using leaky parallel plate waveguide and an off-axis parabolic mirror. The bars of the bar code are made from metal with air as gaps between them. We use up to 6 bars in the barcode system which can store up to 64 bits. Because the system employs coherent detection, we can further increase the bit density by adding Teflon strips to the barcode, encoding information in both amplitude and phase delay. These bar codes can be manufactured easily and inexpensively, offering a versatile alternative to RFID tags.

4.
Opt Express ; 29(9): 13806-13814, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985109

RESUMEN

Terahertz technology has greatly benefited from the recent development and generalization of prototyping technologies such as 3D printing and laser machining. These techniques can be used to rapidly fabricate optical devices for applications in sensing, imaging and communications. In this paper, we introduce hot stamping, a simple inexpensive and rapid technique to form 2D metallic patterns that are suitable for many terahertz devices. We fabricate several example devices to illustrate the versatility of the technique, including metasurfaces made of arrays of split-ring resonators with resonances up to 550 GHz. We also fabricate a wire-grid polarizer for use as a polarizing beam splitter. The simplicity and low cost of this technique can help in rapid prototyping and realization of future terahertz devices.

5.
Sci Rep ; 11(1): 5230, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664394

RESUMEN

The design of antennas for terahertz systems remains a significant challenge. These antennas must provide very high gain to overcome significant free-space path loss, which limits their ability to broadcast or receive a beam over a wide angular range. To circumvent this limitation, here we describe a new device concept, based on the application of quasi-conformal transformation optics to the traditional Luneburg lens. This device offers the possibility for wide-angle beam steering and beam reception over a broad bandwidth, scalable to any frequency band in the THz range.

6.
Opt Express ; 27(20): 27663-27681, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684530

RESUMEN

A hollow-core Bragg waveguide-based resonant fluidic sensor operating in the terahertz frequency band is studied. A fused deposition modeling 3D printing technique with a Polylactic Acid filament is employed to fabricate the sensor where the liquid analyte is flowing in the microfluidic channel integrated into the waveguide cladding. The fluidic channel supports a resonant defect state which is probed spectrally using the core-guided mode of the Bragg waveguide. Continuous-wave terahertz spectroscopy is used to characterize the fluidic sensor. The measured signal amplitude shows a dip in the transmission spectrum, while the measured phase shows a sharp change in the vicinity of the anticrossing frequency whose spectral position depends strongly on the real part of the analyte refractive index. The sensor spectral response is further optimized by tailoring the waveguide length and position of the defect layer. Consistent with the results of numerical modeling, the measured sensor sensitivity is ~110 GHz/RIU, while the sensor resolution ~0.0045 RIU is limited by the parasitic standing waves in the spectrometer cavity. We believe that the proposed fluidic sensor opens new opportunities in applied chemical and biological sensing as it offers a non-contact measurement technique for monitoring refractive index changes in flowing liquids.

7.
Opt Express ; 25(10): 11009-11026, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788787

RESUMEN

We study the possibility of analog signal processing for the upcoming terahertz (THz) high-bitrate communications using as an example the problem of dispersion compensation in the THz communication links. In particular, two Waveguide Bragg Grating devices (WBGs) operating in the transmission mode are detailed. WBGs are designed by introducing periodic corrugation onto the inner surface of the metalized tubes. The resultant devices operate in a single mode regime either in the vicinity of the modal cutoff or in the vicinity of a bandgap edge, featuring large negative group velocity dispersions (GVD). We fabricate the proposed WBGs using 3D stereolithography, and metallize them using wet chemistry. Optical properties of the fabricated WBGs are investigated both theoretically and experimentally. The results confirm single mode guidance, relatively high coupling efficiency, as well as large negative group velocity dispersions in the range of several -100's ps/(THz · cm) in the vicinity of 0.14THz. This makes the short sections of proposed WBGs suitable for compensating positive dispersion incurred in the THz wireless links or fiber-assisted THz interconnects for signals of several-GHz bandwidth. Finally, we comment on the challenges associated with the analog signal processing in the THz spectral range.

8.
Opt Express ; 25(4): 4126-4144, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241619

RESUMEN

We study a 3D-printed hollow core terahertz (THz) Bragg waveguide for resonant surface sensing applications. We demonstrate theoretically and confirm experimentally that by introducing a defect in the first layer of the Bragg reflector, thereby causing anticrossing between the dispersion relations of the core-guided mode and the defect mode, we can create a sharp transmission dip in the waveguide transmission spectrum. By tracking changes in the spectral position of the narrow transmission dip, one can build a sensor, which is highly sensitive to the optical properties of the defect layer. To calibrate our sensor, we use PMMA layers of various thicknesses deposited onto the waveguide core surface. The measured sensitivity to changes in the defect layer thickness is found to be 0.1 GHz/µm. Then, we explore THz resonant surface sensing using α-lactose monohydrate powder as an analyte. We employ a rotating THz Bragg fiber and a semi-automatic powder feeder to explore the limit of the analyte thickness detection using a surface modality. We demonstrate experimentally that powder layer thickness variations as small as 3µm can be reliably detected with our sensor. Finally, we present a comparative study of the time-domain spectroscopy versus continuous wave THz systems supplemented with THz imaging for resonant surface sensing applications.

9.
Opt Express ; 21(23): 27802-3, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514296

RESUMEN

In a recent paper, Anthony et al. [Opt. Express 21, 2903 (2013)] demonstrated broadband terahertz pulse propagation through the hollow core fibers with two embedded Indium wires. In another paper by A. Markov et al. [Opt. Express 21, 12728 (2013)], we proposed a plasmonic THz fiber featuring two metallic wires held in place by the porous dielectric cladding functioning as a mechanical support. Although the cross sections of the two waveguides look very similar, we were surprised to find that the guidance mechanisms for these two waveguides are quite different. In fact, waveguide considered by A. Markov et al. was guiding a plasmonic mode, while the waveguide presented by Anthony et al. was guiding a dielectric waveguide-like mode. Finally, we have realized that by reducing the waveguide dimensions by a factor of ~10-20 one can transition from the dielectric waveguide guidance as it is demonstrated by Anthony et al. to plasmonic guidance as reported in A. Markov et al. Therefore, we conclude that both waveguide are essentially identical, while their guidance mechanism changes as a function of the waveguide overall size.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Nanofibras/química , Nanoporos/ultraestructura , Nanocables/química , Resonancia por Plasmón de Superficie/instrumentación , Radiación Terahertz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...