Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 876: 162697, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898535

RESUMEN

Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.


Asunto(s)
Sequías , Refugio de Fauna , Humanos , Animales , Australia del Sur , Australia , Biomasa , Árboles
2.
PLoS One ; 17(12): e0278833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36516174

RESUMEN

Monitoring shifts in vegetation composition over time is essential for tracking biodiversity changes and for designing ecosystem management strategies. In Australia, the Terrestrial Ecosystem Research Network (TERN) provides a continent-wide network of monitoring sites (AusPlots) that can be used to assess the shifts in vegetation composition and structure of Australian Major Vegetation Groups (MVGs). Here we use time-series site data to quantify the extent and rate of MVG shifts between repeat visits and to recommend the most appropriate sampling frequency for specific MVGs. The research area spans a ~1,500 km latitudinal gradient within south/central Australia from arid rangelands in the north to Mediterranean vegetation in the south. The standardized AusPlots protocol was employed to repeatedly survey 103 one-hectare plots, assessed between 2011 and 2019. Floristic and growth form dissimilarities between visits were calculated with distance metrics and then regressed against survey interval. Multivariate ordination was used to explore temporal floristic shifts. Rank-dominance curves were used to display variations in species' importance. Between repeated visits, sites exhibited high variability for all vegetation parameters and trajectories. However, several trends emerged: (a) Species composition moved away from baseline linearly with intervals between surveys. (b) The rate of species turnover was approximately double in communities that are herbaceous versus woody-dominated. (c) Species abundances and growth forms shift at different speeds. All floristic and structural metrics shifted between re-visits, with varying magnitude and speed, but herbaceous-dominated plots showed higher floristic dynamism. Although the expanse, logistics, and the short time between visits constrained our analysis and interpretation, our results suggest that shorter revisit intervals may be appropriate for herbaceous compared to woody systems to track change most efficiently.


Asunto(s)
Biodiversidad , Ecosistema , Australia , Australia del Sur
3.
PLoS One ; 17(8): e0271603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35994485

RESUMEN

Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families. Proportional cover and richness of C4 species were determined at 541 one-hectare plots across Australia for 14 families. C4 cover and richness of the most common and abundant families were regressed against climate and local parameters. C4 richness and cover in the monocot families Poaceae and Cyperaceae increased with latitude and were strongly positively correlated with January temperatures, however C4 Cyperaceae occupied a more restricted temperature range. Seasonal rainfall, soil pH, soil texture, and tree cover modified proportional C4 cover in both families. Eudicot families displayed considerable variation in C4 distribution patterns. Proportional C4 Euphorbiaceae richness and cover were negatively correlated with increased moisture availability (i.e. high rainfall and low aridity), indicating they were more common in dry environments. Proportional C4 Chenopodiaceae richness and cover were weakly correlated with climate and local environmental factors, including soil texture. However, the explanatory power of C4 Chenopodiaceae models were poor, suggesting none of the factors considered in this study strongly influenced Chenopodiaceae distribution. Proportional C4 richness and cover in Aizoaceae, Amaranthaceae, and Portulacaceae increased with latitude, suggesting C4 cover and richness in these families increased with temperature and summer rainfall, but sample size was insufficient for regression analysis. Results demonstrate the unique relationships between different C4 taxa and climate, and the significant modifying effects of environmental factors on C4 distribution. Our work also revealed C4 families will not exhibit similar responses to local perturbations or climate.


Asunto(s)
Chenopodiaceae , Plantas , Biodiversidad , Chenopodiaceae/fisiología , Clima , Ecosistema , Poaceae/fisiología , Suelo
4.
Ecol Evol ; 11(23): 17060-17070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938492

RESUMEN

In an era of unprecedented ecological upheaval, monitoring ecosystem change at large spatial scales and over long-time frames is an essential endeavor of effective environmental management and conservation. However, economic limitations often preclude revisiting entire monitoring networks at high frequency. We aimed here to develop a prioritization strategy for monitoring networks to select a subset of existing sites that meets the principles of complementarity and representativeness of the whole ecological reality, and maximizes ecological complementarity (species accumulation) and the spatial and environmental representativeness. We applied two well-known approaches for conservation design, the "minimum set" and the "maximal coverage" problems, using a suite of alpha and beta biodiversity metrics. We created a novel function for the R environment that performs biodiversity metric comparisons and site prioritization on a plot-by-plot basis. We tested our procedures using plot data provided by the Terrestrial Ecosystem Research Network (TERN) AusPlots, an Australian long-term monitoring network of 774 vegetation and soil monitoring plots. We selected 250 plots and 80% of the total species recorded as targets for the maximal coverage and minimum set problems, respectively. We compared the subsets selected by the different biodiversity metrics in terms of complementarity and spatial and environmental representativeness. We found that prioritization based on species turnover (i.e., iterative selection of the most dissimilar plot to a cumulative sample in terms of species replacement) maximized ecological complementarity and spatial representativeness, while also providing high environmental coverage. Species richness was an unreliable metric for spatial representation. Selection based on range-rarity-richness was balanced in terms of complementarity and representativeness, whereas its richness-corrected implementation failed to capture ecological and environmental variation. Prioritization based on species turnover is desirable to cover the maximum variability of the whole network. Synthesis and applications: Our results inform monitoring design and conservation priorities, which can benefit by considering the turnover component of beta diversity in addition to univariate metrics. Our tool is computationally efficient, free, and can be readily applied to any species versus sites dataset, facilitating rapid decision-making.

5.
Life (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208381

RESUMEN

Olearia pannosa is a plant species listed as vulnerable in Australia. Two subspecies are currently recognised (O. pannosa subsp. pannosa (silver daisy) and O. pannosa subsp. cardiophylla (velvet daisy)), which have overlapping ranges but distinct leaf shape. Remnant populations face threats from habitat fragmentation and climate change. We analysed range-wide genomic data and leaf shape variation to assess population diversity and divergence and to inform conservation management strategies. We detected three distinct genetic groupings and a likely cryptic species. Samples identified as O. pannosa subsp. cardiophylla from the Flinders Ranges in South Australia were genetically distinct from all other samples and likely form a separate, range-restricted species. Remaining samples formed two genetic clusters, which aligned with leaf shape differences but not fully with current subspecies classifications. Levels of genetic diversity and inbreeding differed between the three genetic groups, suggesting each requires a separate management strategy. Additionally, we tested for associations between genetic and environmental variation and carried out habitat suitability modelling for O. pannosa subsp. pannosa populations. We found mean annual maximum temperature explained a significant proportion of genomic variance. Habitat suitability modelling identified mean summer maximum temperature, precipitation seasonality and mean annual rainfall as constraints on the distribution of O. pannosa subsp. pannosa, highlighting increasing aridity as a threat for populations located near suitability thresholds. Our results suggest maximum temperature is an important agent of selection on O. pannosa subsp. pannosa and should be considered in conservation strategies. We recommend taxonomic revision of O. pannosa and provide conservation management recommendations.

6.
Nat Ecol Evol ; 5(8): 1123-1134, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34112996

RESUMEN

Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.


Asunto(s)
Bosques , Dispersión de las Plantas , Clima , Fenotipo , Agua
7.
Sci Data ; 8(1): 97, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795698

RESUMEN

The photosynthetic pathway of plants is a fundamental trait that influences terrestrial environments from the local to global level. The distribution of different photosynthetic pathways in Australia is expected to undergo a substantial shift due to climate change and rising atmospheric CO2; however, tracking change is hindered by a lack of data on the pathways of species, as well as their distribution and relative cover within plant communities. Here we present the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017. This dataset was created to facilitate research exploring trends in vegetation change across Australia. Species were assigned a photosynthetic pathway using published literature and stable carbon isotope analysis of bulk tissue. The photosynthetic pathway of species can be extracted from the dataset individually, or used in conjunction with vegetation surveys to study the occurrence and abundance of pathways across the continent. This dataset will be updated as TERN's plot network expands and new information becomes available.


Asunto(s)
Fotosíntesis , Plantas/metabolismo , Atmósfera/química , Australia , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Cambio Climático , Ecosistema
8.
Biol Rev Camb Philos Soc ; 95(6): 1706-1719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32648358

RESUMEN

Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Conservación de los Recursos Naturales
9.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32063745

RESUMEN

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

10.
Nat Ecol Evol ; 2(12): 1906-1917, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455437

RESUMEN

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.


Asunto(s)
Rasgos de la Historia de Vida , Dispersión de las Plantas , Plantas , Bosques , Pradera
11.
PLoS One ; 13(9): e0202073, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30192858

RESUMEN

We describe and correlate environmental, floristic and structural vegetation traits of a large portion of Australian rangelands. We analysed 351 one hectare vegetation plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) using the AusPlots Rangelands standardized method. The AusPlots Rangelands method involves surveying 1010 one meter-spaced point-intercepts (IPs) per plot. At each IP, species were scored, categorised by growth-form, converted to percentage cover as the input for the plot x species matrix. Vegetation structure is depicted by growth-form configuration and relative importance. The floristic and structural distance matrices were correlated with the Mantel test. Canonical correspondence analysis (CCA) related floristic composition to environmental variables sourced from WorldClim, the Atlas of Living Australia and TERN's Soil and Landscape Grid. Differences between clusters were tested with ANOVA while principal component analysis (PCA) ordered the plots within the environmental space. Our plot x species matrix required segmentation due to sparsity and high ß-diversity. Based on the ordination of plots latitude within environmental space, the matrix was segmented into three "superclusters": the winter rain and temperate Mediterranean, the monsoonal rain savannas and the arid deserts. Further classification, with the UPGMA linkage method, generated two, four and five clusters, respectively. All groupings are described by species richness, diversity indices and growth form conformation. Several floristic disjunctions were apparent and their possible causes are discussed. For all superclusters, the correspondence between the floristic and the structural or growth form matrices was statistically significant. CCA ordination clearly demarcated all groupings. Aridity, rainfall, temperature, seasonality, soil nitrogen and pH are significant correlates to the ordination of superclusters and clusters. At present, our results are influenced by incomplete sampling. As more sites are surveyed, this pioneer analysis will be updated and refined providing tools for the effective management of Australian rangelands.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Ambiente , Magnoliopsida/fisiología , Análisis de Varianza , Australia , Clima , Geografía , Pradera , Magnoliopsida/clasificación , Análisis de Componente Principal , Lluvia , Estaciones del Año , Suelo/química , Especificidad de la Especie
12.
Ecol Evol ; 7(13): 4607-4619, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28690791

RESUMEN

Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns. Transect networks provide cost-effective and robust insights into ecological and evolutionary adaptation and improve forecasting of ecosystem change. We draw on the experience and research facilitated by the Australian Transect Network to demonstrate our case, with examples, to clarify how population- and community-level studies can be integrated with observations from multiple transects, manipulative experiments, genomics, and ecological modeling to gain novel insights into how species and systems respond to climate change. This integration can provide a spatiotemporal understanding of past and future climate-induced changes, which will inform effective management actions for promoting biodiversity resilience.

13.
PLoS One ; 12(6): e0178681, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570604

RESUMEN

Weeds are commonly considered a threat to biodiversity, yet interactions between native and exotic species in grasslands are poorly understood and reported results vary depending on the spatial scale of study, the factors controlled for and the response variables analysed. We tested whether weed presence and abundance is related to declines in biodiversity in Australian grasslands. We employed existing field data from 241 plots along a disturbance gradient and correlated species richness, cover and Shannon diversity for natives and exotics, controlling for seasonal rainfall, climatic gradients and nutrient status. We found no negative relationships in terms of emergent diversity metrics and occupation of space, indeed, many positive relationships were revealed. When split by land-use, differences were found along the disturbance gradient. In high-moderately disturbed grasslands associated with land-uses such as cropping and modified pastures, positive associations were enhanced. Tolerance and facilitation mechanisms may be involved, such as complementary roles through different life history strategies: the exotic flora was dominated mainly by annual grasses and herbs whereas the native flora represented more diverse growth-forms with a higher proportion of perennials. The positive relationships existing between native and exotic plant species in high-moderately disturbed grasslands of South Australia are most likely due to facilitation through different strategies in occupation of space given that the effect of habitat suitability was controlled for by including environmental and disturbance factors. Consequently, although particular weeds may negatively impact biodiversity, this cannot be generalised and management focusing on general weed eradication in grasslands might be ineffectual.


Asunto(s)
Biodiversidad , Pradera , Malezas , Plantas/clasificación , Australia
14.
Science ; 356(6338): 635-638, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28495750

RESUMEN

Dryland biomes cover two-fifths of Earth's land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high temporal resolution, which are available through the Google Earth platform. We show that in 2015, 1327 million hectares of drylands had more than 10% tree-cover, and 1079 million hectares comprised forest. Our estimate is 40 to 47% higher than previous estimates, corresponding to 467 million hectares of forest that have never been reported before. This increases current estimates of global forest cover by at least 9%.


Asunto(s)
Bosques , Conservación de los Recursos Naturales , Planeta Tierra , Ecosistema , Mapeo Geográfico
15.
PLoS One ; 12(1): e0170137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095496

RESUMEN

Australian rangelands ecosystems cover 81% of the continent but are understudied and continental-scale research has been limited in part by a lack of precise data that are standardised between jurisdictions. We present a new dataset from AusPlots Rangelands that enables integrative rangelands analysis due to its geographic scope and standardised methodology. The method provides data on vegetation and soils, enabling comparison of a suite of metrics including fractional vegetation cover, basal area, and species richness, diversity, and composition. Cover estimates are robust and repeatable, allowing comparisons among environments and detection of modest change. The 442 field plots presented here span a rainfall gradient of 129-1437 mm Mean annual precipitation with varying seasonality. Vegetation measurements include vouchered vascular plant species, growth form, basal area, height, cover and substrate type from 1010 point intercepts as well as systematically recorded absences, which are useful for predictive modelling and validation of remote sensing applications. Leaf and soil samples are sampled for downstream chemical and genomic analysis. We overview the sampling of vegetation parameters and environments, applying the data to the question of how species abundance distributions (SADs) vary over climatic gradients, a key question for the influence of environmental change on ecosystem processes. We found linear relationships between SAD shape and rainfall within grassland and shrubland communities, indicating more uneven abundance in deserts and suggesting relative abundance may shift as a consequence of climate change, resulting in altered diversity and ecosystem function. The standardised data of AusPlots enables such analyses at large spatial scales, and the testing of predictions through time with longitudinal sampling. In future, the AusPlots field program will be directed towards improving coverage of space, under-represented environments, vegetation types and fauna and, increasingly, re-sampling of established plots. Providing up-to-date data access methods to enhance re-use is also a priority.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/normas , Pradera , Lluvia , Australia , Suelo
16.
PLoS One ; 11(1): e0144779, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26735131

RESUMEN

We aimed to identify regional centres of plant biodiversity in South Australia, a sub-continental land area of 983,482 km2, by mapping a suite of metrics. Broad-brush conservation issues associated with the centres were mapped, specifically climate sensitivity, exposure to habitat fragmentation, introduced species and altered fire regimes. We compiled 727,417 plant species records from plot-based field surveys and herbarium records and mapped the following: species richness (all species; South Australian endemics; conservation-dependent species; introduced species); georeferenced weighted endemism, phylogenetic diversity, georeferenced phylogenetic endemism; and measures of beta diversity at local and state-wide scales. Associated conservation issues mapped were: climate sensitivity measured via ordination and non-linear modelling; habitat fragmentation represented by the proportion of remnant vegetation within a moving window; fire prone landscapes assessed using fire history records; invasive species assessed through diversity metrics, species distribution and literature. Compared to plots, herbarium data had higher spatial and taxonomic coverage but records were more biased towards major transport corridors. Beta diversity was influenced by sampling intensity and scale of comparison. We identified six centres of high plant biodiversity for South Australia: Western Kangaroo Island; Southern Mount Lofty Ranges; Anangu Pitjantjatjara Yankunytjatjara lands; Southern Flinders Ranges; Southern Eyre Peninsula; Lower South East. Species composition in the arid-mediterranean ecotone was the most climate sensitive. Fragmentation mapping highlighted the dichotomy between extensive land-use and high remnancy in the north and intensive land-use and low remnancy in the south. Invasive species were most species rich in agricultural areas close to population centres. Fire mapping revealed large variation in frequency across the state. Biodiversity scores were not always congruent between metrics or datasets, notably for categorical endemism to South Australia versus georeferenced weighted endemism, justifying diverse approaches and cautious interpretation. The study could be extended to high resolution assessments of biodiversity centres and cost:benefit analysis for interventions.


Asunto(s)
Biodiversidad , Plantas/clasificación , Clima , Conservación de los Recursos Naturales , Especies Introducidas , Filogenia , Plantas/metabolismo , Australia del Sur
17.
Environ Monit Assess ; 185(5): 3959-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22993028

RESUMEN

Practical and useful vegetation monitoring methods are needed, and data compatibility and validation of remotely sensed data are desirable. Methods have not been adequately tested for heathy woodlands. We tested the feasibility of detecting species composition shifts in remnant woodland in South Australia, comparing historical (1986) plot data with temporal replicates (2010). We compared the uniformity of species composition among spatially scattered versus spatially clustered plots. At two sites, we compared visual and point-intercept estimation of cover and species diversity. Species composition (presence/absence) shifted between 1986 and 2010. Species that significantly shifted in frequency had low cover. Observations of decreasing species were consistent with predictions from temperature response curves (generalised additive models) for climate change over the period. However, long-term trends could not be distinguished from medium-term dynamics or short-term changes in visibility from this dataset. Difficulties were highlighted in assessing compositional change using historical baselines established for a different purpose in terms of spatial sampling and accuracy of replicate plots, differences in standard plot methods and verification of species identifications. Spatially clustered replicate plots were more similar in species composition than spatially scattered plots, improving change detection potential but decreasing area of inference. Visual surveys detected more species than point-intercepts. Visual cover estimates differed little from point-intercepts although underestimating cover in some instances relative to intercepts. Point-intercepts provide more precise cover estimates of dominant species but took longer and were difficult in steep, heathy terrain. A decision tree based on costs and benefits is presented assessing monitoring options based on data presented. The appropriate method is a function of available resources, the need for precise cover estimates versus adequate species detection, replication and practical considerations such as access and terrain.


Asunto(s)
Biodiversidad , Ambiente , Monitoreo del Ambiente/métodos , Árboles/clasificación , Clima , Región Mediterránea , Australia del Sur
19.
Biol Lett ; 8(5): 882-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22764114

RESUMEN

Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.


Asunto(s)
Cambio Climático , Hojas de la Planta/fisiología , Árboles/fisiología , Clima , Monitoreo del Ambiente , Geografía , Hojas de la Planta/anatomía & histología , Fenómenos Fisiológicos de las Plantas , Lluvia , Australia del Sur , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...