Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37904990

RESUMEN

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

2.
Acta Neuropathol Commun ; 11(1): 50, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966348

RESUMEN

Gangliogliomas are brain tumors composed of neuron-like and macroglia-like components that occur in children and young adults. Gangliogliomas are often characterized by a rare population of immature astrocyte-appearing cells expressing CD34, a marker expressed in the neuroectoderm (neural precursor cells) during embryogenesis. New insights are needed to refine tumor classification and to identify therapeutic approaches. We evaluated five gangliogliomas with single nucleus RNA-seq, cellular indexing of transcriptomes and epitopes by sequencing, and/or spatially-resolved RNA-seq. We uncovered a population of CD34+ neoplastic cells with mixed neuroectodermal, immature astrocyte, and neuronal markers. Gene regulatory network interrogation in these neuroectoderm-like cells revealed control of transcriptional programming by TCF7L2/MEIS1-PAX6 and SOX2, similar to that found during neuroectodermal/neural development. Developmental trajectory analyses place neuroectoderm-like tumor cells as precursor cells that give rise to neuron-like and macroglia-like neoplastic cells. Spatially-resolved transcriptomics revealed a neuroectoderm-like tumor cell niche with relative lack of vascular and immune cells. We used these high resolution results to deconvolute clinically-annotated transcriptomic data, confirming that CD34+ cell-associated gene programs associate with gangliogliomas compared to other glial brain tumors. Together, these deep transcriptomic approaches characterized a ganglioglioma cellular hierarchy-confirming CD34+ neuroectoderm-like tumor precursor cells, controlling transcription programs, cell signaling, and associated immune cell states. These findings may guide tumor classification, diagnosis, prognostication, and therapeutic investigations.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Células-Madre Neurales , Niño , Humanos , Ganglioglioma/patología , Transcriptoma , Placa Neural/patología , Células-Madre Neurales/patología , Neoplasias Encefálicas/patología
3.
Cancers (Basel) ; 14(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36139666

RESUMEN

Diffuse midline gliomas arise in the brainstem and other midline brain structures and cause a large proportion of childhood brain tumor deaths. Radiation therapy is the most effective treatment option, but these tumors ultimately progress. Inhibition of the phosphoinositide-3-kinase (PI3K)-like kinase, ataxia-telangiectasia mutated (ATM), which orchestrates the cellular response to radiation-induced DNA damage, may enhance the efficacy of radiation therapy. Diffuse midline gliomas in the brainstem contain loss-of-function mutations in the tumor suppressor PTEN, or functionally similar alterations in the phosphoinositide-3-kinase (PI3K) pathway, at moderate frequency. Here, we sought to determine if ATM inactivation could radiosensitize a primary mouse model of brainstem glioma driven by Pten loss. Using Cre/loxP recombinase technology and the RCAS/TVA retroviral gene delivery system, we established a mouse model of brainstem glioma driven by Pten deletion. We find that Pten-null brainstem gliomas are relatively radiosensitive at baseline. In addition, we show that deletion of Atm in the tumor cells does not extend survival of mice bearing Pten-null brainstem gliomas after focal brain irradiation. These results characterize a novel primary mouse model of PTEN-mutated brainstem glioma and provide insights into the mechanism of radiosensitization by ATM deletion, which may guide the design of future clinical trials.

4.
Nat Commun ; 13(1): 604, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105861

RESUMEN

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Asunto(s)
Glioma/genética , Mutación , Oncogenes/genética , Proteína Fosfatasa 2C/genética , Adolescente , Adulto , Animales , Neoplasias del Tronco Encefálico/genética , Carcinogénesis/genética , Ciclo Celular , Niño , Preescolar , Daño del ADN , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Proteínas Proto-Oncogénicas c-mdm2 , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Adulto Joven
5.
Int J Radiat Oncol Biol Phys ; 112(3): 771-779, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619331

RESUMEN

PURPOSE: Diffuse intrinsic pontine gliomas (DIPGs) arise in the pons and are the leading cause of death from brain tumors in children. DIPGs are routinely treated with radiation therapy, which temporarily improves neurological symptoms but generally fails to achieve local control. Because numerous clinical trials have not improved survival from DIPG over standard radiation therapy alone, there is a pressing need to evaluate new therapeutic strategies for this devastating disease. Vascular damage caused by radiation therapy can increase the permeability of tumor blood vessels and promote tumor cell death. METHODS AND MATERIALS: To investigate the impact of endothelial cell death on tumor response to radiation therapy in DIPG, we used dual recombinase (Cre + FlpO) technology to generate primary brainstem gliomas which lack ataxia telangiectasia mutated (Atm) in the vasculature. RESULTS: Here, we show that Atm-deficient tumor endothelial cells are sensitized to radiation therapy. Furthermore, radiosensitization of the vasculature in primary gliomas triggered an increase in total tumor cell death. Despite the observed increase in cell killing, in mice with autochthonous DIPGs treated with radiation therapy, deletion of Atm specifically in tumor endothelial cells failed to improve survival. CONCLUSIONS: These results suggest that targeting the tumor cells, rather than endothelial cells, during radiation therapy will be necessary to improve survival among children with DIPG.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Animales , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Células Endoteliales/patología , Glioma/patología , Glioma/radioterapia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...