Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
PLoS Biol ; 22(9): e3002791, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255306

RESUMEN

Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite Toxoplasma gondii. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells' inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.

2.
Brain ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106285

RESUMEN

Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified. GABAa mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, was shown to participate to ictogenesis in human pediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is still unclear. Here we studied the post translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCC), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and ultimately GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo controls, diagnosed by histology plus genetic profiling) were operated for drug resistant epilepsy. Postoperative cortical tissues were recorded on multielectrode array (MEA) to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled Cl- conductance and equilibrium potential (EGABA) for GABA measurement. Of the 25 clinical cases, half harbored a somatic mutation in the mTOR pathway, while pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, that was reversed by WNK1 and SPAK antagonists (NEM and Staurosporine). mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR specific antagonist Rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in EGABA by rapamycin, measured after incorporation of MCD membranes to X. laevis oocytes, in line with a reestablishment of normal ECl-. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to chloride cotransporters deregulation, increased neuronal chloride levels and GABAa dysfunction in malformations of Cortical Development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.

3.
Nutrients ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125353

RESUMEN

Cardiovascular diseases (CVDs) are one of the main causes of mortality and morbidity worldwide. A healthy diet rich in plant-derived compounds such as (poly)phenols appears to have a key role in improving cardiovascular health. Flavan-3-ols represent a subclass of (poly)phenols of great interest for their possible health benefits. In this review, we summarized the results of clinical studies on vascular outcomes of flavan-3-ol supplementation and we focused on the role of the microbiota in CVD. Clinical trials included in this review showed that supplementation with flavan-3-ols mostly derived from cocoa products significantly reduces blood pressure and improves endothelial function. Studies on catechins from green tea demonstrated better results when involving healthy individuals. From a mechanistic point of view, emerging evidence suggests that microbial metabolites may play a role in the observed effects. Their function extends beyond the previous belief of ROS scavenging activity and encompasses a direct impact on gene expression and protein function. Although flavan-3-ols appear to have effects on cardiovascular health, further studies are needed to clarify and confirm these potential benefits and the rising evidence of the potential involvement of the microbiota.


Asunto(s)
Enfermedades Cardiovasculares , Flavonoides , Humanos , Flavonoides/farmacología , Enfermedades Cardiovasculares/prevención & control , Cacao/química , Té/química , Suplementos Dietéticos , Presión Sanguínea/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos
4.
Bone ; 187: 117205, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39019132

RESUMEN

MULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM). Specifically, nanoLC-MS/MS experiments revealed an upregulation of SPARC, and collagen products (COL1A1, COL3A1, COL5A1) in response to TRIM37 KD. Concurrently, large-scale qPCR assays targeting osteogenesis-related genes corroborated these dysregulations of SPARC at the mRNA level. Gene ontology enrichment analysis highlighted the involvement of dysregulated proteins in ECM organization and TGF-ß signaling pathways, indicating a role for TRIM37 in maintaining ECM integrity and regulating chondrocyte proliferation. These findings suggest that TRIM37 deficiency in chondrocytes change ECM protein composition and could impairs long bone growth, contributing to the pathophysiology of MULIBREY nanism.


Asunto(s)
Condrocitos , Regulación hacia Abajo , Enanismo Mulibrey , Proteómica , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Condrocitos/metabolismo , Condrocitos/patología , Proteómica/métodos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Regulación hacia Abajo/genética , Enanismo Mulibrey/metabolismo , Enanismo Mulibrey/patología , Línea Celular , Proteínas de la Matriz Extracelular/metabolismo , Osteonectina/metabolismo , Osteonectina/genética , Técnicas de Silenciamiento del Gen
5.
PLoS Biol ; 22(7): e3002724, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39052688

RESUMEN

Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Factores de Transcripción , Sitio de Iniciación de la Transcripción , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cryptococcus/genética , Cryptococcus/patogenicidad , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Animales , Ratones , Virulencia/genética , Fagocitosis/genética
6.
iScience ; 27(6): 109929, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799566

RESUMEN

Tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with variable demand for insulin. Here, we asked how insulin-degrading enzyme (IDE) affects beta cell adaptation to metabolic and immune stress. C57BL/6 and autoimmune non-obese diabetic (NOD) mice lacking IDE were exposed to proteotoxic, metabolic, and immune stress. IDE deficiency induced a low-level UPR with islet hypertrophy at the steady state, rapamycin-sensitive beta cell proliferation enhanced by proteotoxic stress, and beta cell decompensation upon high-fat feeding. IDE deficiency also enhanced the UPR triggered by proteotoxic stress in human EndoC-ßH1 cells. In Ide-/- NOD mice, islet inflammation specifically induced regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. These findings establish a role of IDE in islet cell protein homeostasis, demonstrate how its absence induces metabolic decompensation despite beta cell proliferation, and UPR-independent islet regeneration in the presence of inflammation.

7.
Sci Rep ; 14(1): 7797, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565565

RESUMEN

Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.


Asunto(s)
Francisella tularensis , Tularemia , Animales , Francisella tularensis/genética , Actinas/metabolismo , Biotina/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Macrófagos/metabolismo , Estadios del Ciclo de Vida , Tularemia/microbiología , Islas Genómicas
8.
Clin Proteomics ; 21(1): 22, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475715

RESUMEN

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

9.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546978

RESUMEN

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Asunto(s)
Dasatinib , Células Endoteliales , Canales de Potasio de Dominio Poro en Tándem , Dasatinib/farmacología , Dasatinib/efectos adversos , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Movimiento Celular/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Proteínas del Tejido Nervioso
10.
Clin Kidney J ; 17(3): sfae040, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510798

RESUMEN

Background: Cystinuria is associated with a high prevalence of chronic kidney disease (CKD). We previously described a urinary inflammatory-protein signature (UIS), including 38 upregulated proteins, in cystinuric patients (Cys-patients), compared with healthy controls (HC). This UIS was higher in Cys-patients with CKD. In the present observational study, we aimed to investigate the UIS in Cys-patients without CKD and patients with calcium nephrolithiasis (Lith-patients), versus HC and the effect of urine alkalization on the UIS of Cys-patients. Methods: UIS was evaluated by nano-liquid chromatography coupled to high-resolution mass spectrometry in adult HC, Lith-patients and non-treated Cys-patients with an estimated glomerular filtration rate >60 mL/min/1.73 m2, and after a 3-month conventional alkalizing treatment in Cys-patients. Results: Twenty-one Cys-patients [12 men, median age (interquartile range) 30.0 (25.0-44.0) years], 12 Lith-patients [8 men, 46.2 (39.5-54.2) years] and 7 HC [2 men, 43.1 (31.0-53.9) years] were included. Among the 38 proteins upregulated in our previous work, 11 proteins were also upregulated in Cys-patients compared with HC in this study (5 circulating inflammatory proteins and 6 neutrophil-derived proteins). This UIS was also found in some Lith-patients. Using this UIS, we identified two subclusters of Cys-patients (5 with a very high/high UIS and 16 with a moderate/low UIS). In the Cys-patients with very high/high UIS, urine alkalization induced a significant decrease in urinary neutrophil-derived proteins. Conclusion: A high UIS is present in some Cys-patients without CKD and decreases under alkalizing treatment. This UIS could be a prognostic marker to predict the evolution towards CKD in cystinuria.

11.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628837

RESUMEN

The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.


Asunto(s)
Bioensayo , Plasmodium falciparum , Humanos , Animales , Plasmodium falciparum/genética , Proteína Fosfatasa 1/genética , Animales Modificados Genéticamente , Dominio Catalítico
12.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569500

RESUMEN

Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.

13.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503145

RESUMEN

Appropriate tuning of protein homeostasis through mobilization of the unfolded protein response (UPR) is key to the capacity of pancreatic beta cells to cope with highly variable demand for insulin synthesis. An efficient UPR ensures a sufficient beta cell mass and secretory output but can also affect beta cell resilience to autoimmune aggression. The factors regulating protein homeostasis in the face of metabolic and immune challenges are insufficiently understood. We examined beta cell adaptation to stress in mice deficient for insulin-degrading enzyme (IDE), a ubiquitous protease with high affinity for insulin and genetic association with type 2 diabetes. IDE deficiency induced a low-level UPR in both C57BL/6 and autoimmune non-obese diabetic (NOD) mice, associated with rapamycin-sensitive beta cell proliferation strongly enhanced by proteotoxic stress. Moreover, in NOD mice, IDE deficiency protected from spontaneous diabetes and triggered an additional independent pathway, conditional on the presence of islet inflammation but inhibited by proteotoxic stress, highlighted by strong upregulation of regenerating islet-derived protein 2, a protein attenuating autoimmune inflammation. Our findings establish a key role of IDE in islet cell protein homeostasis, identify a link between low-level UPR and proliferation, and reveal an UPR-independent anti-inflammatory islet cell response uncovered in the absence of IDE of potential interest in autoimmune diabetes.

14.
Curr Pharm Des ; 29(25): 1971-1974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37493160

RESUMEN

Curcumin is a polyphenol compound widely investigated for its potential health benefits. Clinical evidence from randomized controlled trials shows substantial positive effects in healthy individuals but contrasting results for patients with cardio-metabolic disorders. There is growing evidence that the gut microbiota may play a role in curcumin transformation and absorption of more bioactive compounds, suggesting that the baseline health status (or other unmeasured variables) may explain the observed variability of the results.


Asunto(s)
Curcumina , Microbioma Gastrointestinal , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Polifenoles , Suplementos Dietéticos
15.
Int J Food Sci Nutr ; 74(3): 362-372, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37101389

RESUMEN

The prevalence of cognitive disorders is growing and evidence suggests the putative role of plant-based foods and beverages containing (poly)phenols. The aim of this study was to explore the association between the consumption of (poly)phenol-rich beverages, including wine and beer, resveratrol intake, and cognitive status in a cohort of older adults. The dietary intakes were assessed using a validated food frequency questionnaire, and cognitive status using the Short Portable Mental Status Questionnaire. Multivariate logistic regression analyses showed that individuals in the second and third tertile of red wine consumption were less likely to have cognitive impairment than those in the first tertile. In contrast, only individuals in the highest tertile of white wine intake were having lower odds of cognitive impairment. No significant results were found for beer intake. Individuals with higher resveratrol intake were less likely to have cognitive impairment. In conclusion, consumption of (poly)phenol-rich beverages may potentially affect cognition among older adults.


Asunto(s)
Fenol , Vino , Humanos , Anciano , Resveratrol , Consumo de Bebidas Alcohólicas/epidemiología , Cerveza , Bebidas , Fenoles , Cognición
16.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36829831

RESUMEN

Emerging evidence suggests that diets rich in plant-based foods and beverages may exert plausible effects on human health tackling the risk of chronic diseases. Although the data are promising for numerous outcomes, including cardiovascular diseases, the data on mental health are limited. The aim of this study was to investigate the association between individual polyphenol-rich beverages intake and mental health outcomes, such as perceived stress, depressive symptoms, and sleep quality, among adult individuals living in the Mediterranean area. The demographic and dietary characteristics of a sample of 1572 adults living in southern Italy were analysed. Multivariate logistic regression analyses, controlling for confounding factors, were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) of the association between individual polyphenol-rich and alcoholic beverages containing polyphenols and mental health outcomes. The multivariate model adjusted for background covariates and the Mediterranean diet showed that individuals with a moderate intake (up to 1 cup/glass per day) of coffee and tea were less likely to have high perceived stress (OR = 0.61, 95% CI: 0.45-0.84) and depressive symptoms (OR = 0.56, 95% CI: 0.39-0.80), respectively. Furthermore, regular coffee and moderate/regular red wine drinkers were less likely to have depressive symptoms (OR = 0.72, 95% CI: 0.54-0.95 and OR = 0.74, 95% CI: 0.54-0.99, respectively). No significant associations were retrieved for the intake of polyphenol-rich and alcoholic beverages and sleep quality. In conclusion, the results of the present study suggest that polyphenol-rich beverages may be associated with mental health, in terms of depressive symptoms and perceived stress. Nonetheless, further research exploring how the polyphenol-rich beverages impact brain health and what the optimal patterns of consumption are for different populations are warranted.

17.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36499490

RESUMEN

Accumulation of senescent dermal fibroblasts drives skin aging. The reactivation of proliferation is one strategy to modulate cell senescence. Recently, we reported the exact chemical composition of the hydrophilic extract of Oenothera biennis cell cultures (ObHEx) and we showed its skin anti-aging properties. The aim of this work is to assess its biological effect specifically on cell senescence. ObHEx action has been evaluated on normal human dermal fibroblasts subjected to stress-induced premature senescence (SIPS) through an ultra-deep proteomic analysis, leading to the most global senescence-associated proteome so far. Mass spectrometry data show that the treatment with ObHEx re-establishes levels of crucial mitotic proteins, strongly downregulated in senescent cells. To validate our proteomics findings, we proved that ObHEx can, in part, restore the activity of 'senescence-associated-ß-galactosidase', the most common hallmark of senescent cells. Furthermore, to assess if the upregulation of mitotic protein levels translates into a cell cycle re-entry, FACS experiments have been carried out, demonstrating a small but significative reactivation of senescent cell proliferation by ObHEx. In conclusion, the deep senescence-associated global proteome profiling published here provides a panel of hundreds of proteins deregulated by SIPS that can be used by the community to further understand senescence and the effect of new potential modulators. Moreover, proteomics analysis pointed to a specific promitotic effect of ObHEx on senescent cells. Thus, we suggest ObHEx as a powerful adjuvant against senescence associated with skin aging.


Asunto(s)
Oenothera biennis , Proteómica , Humanos , Fibroblastos/metabolismo , Senescencia Celular , Piel , Células Cultivadas
18.
Nat Commun ; 13(1): 6834, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400769

RESUMEN

Defects in RNA splicing have been linked to human disorders, but remain poorly explored in inflammatory bowel disease (IBD). Here, we report that expression of the chromatin and alternative splicing regulator HP1γ is reduced in ulcerative colitis (UC). Accordingly, HP1γ gene inactivation in the mouse gut epithelium triggers IBD-like traits, including inflammation and dysbiosis. In parallel, we find that its loss of function broadly increases splicing noise, favoring the usage of cryptic splice sites at numerous genes with functions in gut biology. This results in the production of progerin, a toxic splice variant of prelamin A mRNA, responsible for the Hutchinson-Gilford Progeria Syndrome of premature aging. Splicing noise is also extensively detected in UC patients in association with inflammation, with progerin transcripts accumulating in the colon mucosa. We propose that monitoring HP1γ activity and RNA splicing precision can help in the management of IBD and, more generally, of accelerated aging.


Asunto(s)
Colitis Ulcerosa , Progeria , Humanos , Ratones , Animales , Homólogo de la Proteína Chromobox 5 , Colitis Ulcerosa/genética , Empalme del ARN/genética , Progeria/genética , Progeria/metabolismo , Inflamación
19.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012204

RESUMEN

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pliegue de Proteína , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Espectrometría de Masas , Mutación
20.
Open Biol ; 12(8): 220015, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35920043

RESUMEN

Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1-LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Plasmodium berghei , Animales , Oocistos/metabolismo , Fosforilación , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA