Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Microsc ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691400

RESUMEN

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.

2.
bioRxiv ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37904966

RESUMEN

Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Although midpiece contraction may occur in a subset of cells that undergo acrosomal exocytosis, live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network's role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility. Significant statement: In this work, we demonstrate that the helical structure of polymerized actin in the flagellum undergoes a rearrangement at the time of sperm-egg fusion. This process is driven by intracellular calcium and promotes a decrease in the sperm midpiece diameter as well as the arrest in motility, which is observed after the fusion process is initiated.

3.
Elife ; 122023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477290

RESUMEN

Humans and other vertebrates define body axis left-right asymmetry in the early stages of embryo development. The mechanism behind left-right establishment is not fully understood. Symmetry breaking occurs in a dedicated organ called the left-right organizer (LRO) and involves motile cilia generating fluid-flow therein. However, it has been a matter of debate whether the process of symmetry breaking relies on a chemosensory or a mechanosensory mechanism (Shinohara et al., 2012). Novel tailored manipulations for LRO fluid extraction in living zebrafish embryos allowed us to pinpoint a physiological developmental period for breaking left-right symmetry during development. The shortest critical time-window was narrowed to one hour and characterized by a mild counterclockwise flow. The experimental challenge consisted in emptying the LRO of its fluid, abrogating simultaneously flow force and chemical determinants. Our findings revealed an unprecedented recovery capacity of the embryo to re-fil and re-circulate new LRO fluid. The embryos that later developed laterality problems were found to be those that had lower anterior angular velocity and thus less anterior-posterior heterogeneity. Next, aiming to test the presence of any secreted determinant, we replaced the extracted LRO fluid by a physiological buffer. Despite some transitory flow homogenization, laterality defects were absent unless viscosity was altered, demonstrating that symmetry breaking does not depend on the nature of the fluid content but is rather sensitive to fluid mechanics. Altogether, we conclude that the zebrafish LRO is more sensitive to fluid dynamics for symmetry breaking.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Desarrollo Embrionario , Cilios/fisiología , Hidrodinámica , Tipificación del Cuerpo/fisiología , Embrión no Mamífero
4.
Biomed Mater ; 18(3)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001533

RESUMEN

The design of hydrogels based on natural polymers that have modulation of antibacterial capacity, ideal performance in release capacity of encapsulated drugs, and desired bioactivity for applications in wound healing represents a modern trend in biomaterials. In this work, novel hydrogels of semi-interpenetrating polymeric networks based on collagen and xanthan gum (XG) were investigated. The linear chains of XG can semi-interpenetrate inside to matrix of crosslinked collagen with polyurethane under physiological conditions, generating amorphous surfaces with fibrillar-granular reliefs that have accelerated gelation time (about 15 min), super water absorption (up to 3100%) and high inhibition capacity of pathogenic bacteria such asEscherichia coli(up to 100% compared to amoxicillin at 20 ppm). The increment of XG in the hydrogel (up to 20 wt.%) allows for improvement in the storage module, resistance to thermal degradation, slow the rate of hydrolytic and proteolytic degradation, allowing to encapsulate and controlled release of molecules such as ketorolac and methylene blue; besides, it shows to keep the metabolic activity of fibroblasts and monocytes at 48 h of evaluation, without observing cytotoxic effects. The bioactivity of these hydrogels is improved since they have excellent hemocompatibility and enhanced cell proliferation. Specifically, the hydrogel with 20 wt.% of XG shows to decrease the production of tumor necrosis factor-αand CCL-2 cytokines, increasing the production of transforming growth factor-ßin human monocytes, which could be used to modulate inflammation and regenerative capacity in wound healing strategies.


Asunto(s)
Colágeno , Hidrogeles , Humanos , Liberación de Fármacos , Hidrogeles/farmacología , Colágeno/farmacología , Cicatrización de Heridas , Polímeros/farmacología , Antibacterianos/farmacología
5.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633090

RESUMEN

The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.


Asunto(s)
Autofagia , Nucléolo Celular , Inestabilidad Genómica , Proteolisis , Animales , Ratones , Autofagia/fisiología , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
6.
Prog Biomater ; 12(1): 25-40, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346576

RESUMEN

The preparation of hydrogels based on biopolymers like collagen and gum arabic gives a chance to provide novel options that can be used in biomedical field. Through a polymeric semi-interpenetration technique, collagen-based polymeric matrices can be associated with gum arabic while controlling its physicochemical and biological properties. To create novel hydrogels with their potential use in the treatment of wounds, the semi-interpenetration process, altering the concentration (0-40% by wt) of gum arabic in a collagen matrix is explored. The ability of gum arabic to create intermolecular hydrogen bonds in the collagen matrix enables the development of semi-interpenetrating polymeric networks (semi-IPN)-based hydrogels with a faster gelation time and higher crosslinking. Amorphous granular surfaces with linked porosity are present in matrices with 30% (by wt) of gum arabic, enhancing the storage modulus and thermal degradation resistance. The hydrogels swell to very high extent in hydrolytic and proteolytic environments, good hemocompatibility, and suppression of growth of pathogens like E. coli, and all it is enhanced by gum arabic included them, in addition to enabling the controlled release of ketorolac. The chemical composition of theses semi-IPN matrices have no deleterious effects on monocytes or fibroblasts, promoting their proliferation, and lowering alpha tumor necrosis factor (α-TNF) secretion in human monocytes.

7.
Nat Commun ; 13(1): 7452, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460648

RESUMEN

The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


Asunto(s)
Algoritmos , Medicamentos Genéricos , Sistemas de Lectura , Microscopía Fluorescente , Colorantes Fluorescentes
8.
J Oncol ; 2022: 9775736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276271

RESUMEN

Melanoma is the deadliest form of skin cancer. Due to its high mutation rates, melanoma is a convenient model to study antitumor immune responses. Dendritic cells (DCs) play a key role in activating cytotoxic CD8+ T lymphocytes and directing them to kill tumor cells. Although there is evidence that DCs infiltrate melanomas, information about the profile of these cells, their activity states, and potential antitumor function remains unclear, particularly for conventional DCs type 1 (cDC1). Approaches to profiling tumor-infiltrating DCs are hindered by their diversity and the high number of signals that can affect their state of activation. Multiplexed immunofluorescence (mIF) allows the simultaneous analysis of multiple markers, but image-based analysis is time-consuming and often inconsistent among analysts. In this work, we evaluated several machine learning (ML) algorithms and established a workflow of nine-parameter image analysis that allowed us to study cDC1s in a reproducible and accessible manner. Using this workflow, we compared melanoma samples between disease-free and metastatic patients at diagnosis. We observed that cDC1s are more abundant in the tumor infiltrate of the former. Furthermore, cDC1s in disease-free patients exhibit an expression profile more congruent with an activator function: CD40highPD-L1low CD86+IL-12+. Although disease-free patients were also enriched with CD40-PD-L1+ cDC1s, these cells were also more compatible with an activator phenotype. The opposite was true for metastatic patients at diagnosis who were enriched for cDC1s with a more tolerogenic phenotype (CD40lowPD-L1highCD86-IL-12-IDO+). ML-based workflows like the one developed here can be used to analyze complex phenotypes of other immune cells and can be brought to laboratories with standard expertise and computer capacity.

9.
J Microsc ; 288(3): 218-241, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35896096

RESUMEN

Due to the wave nature of light, optical microscopy has a lower-bound lateral resolution limit of approximately half of the wavelength of visible light, that is, within the range of 200 to 350 nm. Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is a term used to encompass a collection of image analysis techniques that rely on the statistical processing of temporal variations of the fluorescence signal. FF-SRM aims to reduce the uncertainty of the location of fluorophores within an image, often improving spatial resolution by several tens of nanometers. FF-SRM is suitable for live-cell imaging due to its compatibility with most fluorescent probes and relatively simple instrumental and experimental requirements, which are mostly camera-based epifluorescence instruments. Each FF-SRM approach has strengths and weaknesses, which depend directly on the underlying statistical principles through which enhanced spatial resolution is achieved. In this review, the basic concepts and principles behind a range of FF-SRM methods published to date are described. Their operational parameters are explained and guidance for their selection is provided.


Due to light's wave nature, an optical microscope's resolution range is 200 to 350 nanometers. Several techniques enhance resolution; this work encompasses several fluorescence fluctuation super-resolution (FF-SMR) methods capable of achieving nanoscopic scales. FF-SRM is known to be suitable for fixed or live-cell imaging and compatible with most conventional microscope setups found in a laboratory. However, each FF-SRM approach has its strengths and weaknesses, which depend directly on the underlying principles through which enhanced spatial resolution is achieved. Therefore, the basic concepts and principles behind diverse FF-SRM methods are revisited in this review. In addition, their operational parameters are explained, and guidance for their selection is provided for microscopists interested in FF-SRM.


Asunto(s)
Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos
10.
Cell Calcium ; 104: 102595, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35561647

RESUMEN

The use of a variety of techniques based on super-resolution (SR) microscopy unveiled a close and complex relationship between cytoskeleton reorganization and SOCE. By using SR microscopy many new proteins involved in SOCE regulation have been identified over the last few years. Many enigmas remain unsolved in this highly dynamic field, however, recent developments in SR microscopy promise new answers soon. In the present review, we describe the most relevant findings in SOCE components and SOCE modulation using different methods derived from SR microscopy.


Asunto(s)
Calcio , Microscopía , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo
12.
Biosystems ; 209: 104524, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34453988

RESUMEN

Intracellular Ca2+ is a key regulator of cell signaling and sperm are not the exception. Cells often use cytoplasmic Ca2+ concentration ([Ca2+]i) oscillations as a means to decodify external and internal information. [Ca2+]i oscillations faster than those usually found in other cells and correlated with flagellar beat were the first to be described in sperm in 1993 by Susan Suarez, in the boar. More than 20 years passed before similar [Ca2+]i oscillations were documented in human sperm, simultaneously examining their flagellar beat in three dimensions by Corkidi et al. 2017. On the other hand, 10 years after the discovery of the fast boar [Ca2+]i oscillations, slower ones triggered by compounds from the egg external envelope were found to regulate cell motility and chemotaxis in sperm from marine organisms. Today it is known that sperm display fast and slow spontaneous and agonist triggered [Ca2+]i oscillations. In mammalian sperm these Ca2+ transients may act like a multifaceted tool that regulates fundamental functions such as motility and acrosome reaction. This review covers the main sperm species and experimental conditions where [Ca2+]i oscillations have been described and discusses what is known about the transporters involved, their regulation and the physiological purpose of these oscillations. There is a lot to be learned regarding the origin, regulation and physiological relevance of these Ca2+ oscillations.


Asunto(s)
Reacción Acrosómica/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Canales de Calcio/metabolismo , Humanos , Masculino , Modelos Biológicos , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/fisiología , Espermatozoides/metabolismo
13.
PLoS Pathog ; 17(1): e1009199, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465145

RESUMEN

The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered "net like" structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.


Asunto(s)
Aedes/efectos de los fármacos , Toxinas de Bacillus thuringiensis/metabolismo , Sinergismo Farmacológico , Endotoxinas/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Proteínas Hemolisinas/metabolismo , Insecticidas/metabolismo , Larva/efectos de los fármacos , Aedes/metabolismo , Animales , Toxinas de Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis/toxicidad , Proteínas Bacterianas , Endotoxinas/genética , Endotoxinas/toxicidad , Tracto Gastrointestinal/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Insecticidas/toxicidad , Larva/metabolismo , Unión Proteica
14.
PLoS Comput Biol ; 16(3): e1007605, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32119665

RESUMEN

Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion.


Asunto(s)
Canales de Calcio/metabolismo , Erizos de Mar/metabolismo , Espermatozoides/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Quimiotaxis/fisiología , Biología Computacional/métodos , Iones/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Modelos Teóricos , Transducción de Señal , Motilidad Espermática/fisiología
15.
Elife ; 92020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32149603

RESUMEN

Spermatozoa of marine invertebrates are attracted to their conspecific female gamete by diffusive molecules, called chemoattractants, released from the egg investments in a process known as chemotaxis. The information from the egg chemoattractant concentration field is decoded into intracellular Ca2+ concentration ([Ca2+]i) changes that regulate the internal motors that shape the flagellum as it beats. By studying sea urchin species-specific differences in sperm chemoattractant-receptor characteristics we show that receptor density constrains the steepness of the chemoattractant concentration gradient detectable by spermatozoa. Through analyzing different chemoattractant gradient forms, we demonstrate for the first time that Strongylocentrotus purpuratus sperm are chemotactic and this response is consistent with frequency entrainment of two coupled physiological oscillators: i) the stimulus function and ii) the [Ca2+]i changes. We demonstrate that the slope of the chemoattractant gradients provides the coupling force between both oscillators, arising as a fundamental requirement for sperm chemotaxis.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Oligopéptidos/metabolismo , Receptores de Superficie Celular/metabolismo , Erizos de Mar/fisiología , Motilidad Espermática , Espermatozoides/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Masculino , Óvulo/metabolismo , Especificidad de la Especie , Cola del Espermatozoide/fisiología , Strongylocentrotus purpuratus/fisiología
16.
Apuntes psicol ; 38(1): 13-22, 2020. graf
Artículo en Español | IBECS | ID: ibc-199653

RESUMEN

Es muy común encontrar una concurrencia entre patologías debidas al consumo y otras psicopatologías en personas con dependencia a sustancias. Esto se conoce como patología dual. Una de las patologías que más frecuentemente se asocia al consumo, debido a la gran prevalencia en dependencias, es la depresión. En el presente estudio se detallan las características sociales, de consumo y psicológicas de una muestra de 34 participantes internos en la Comunidad Terapéutica de Los Palacios (Sevilla). También se examina la prevalencia y el nivel de depresión de los participantes mediante el Inventario de Depresión de Beck (BDI), y la relación de la puntuación en este test con las características detalladas en el estudio. Los resultados obtenidos en el BDI reflejaron una alta prevalencia de depresión (55'88%) en los participantes. Además, destaca la influencia de las redes de apoyo en el grado de depresión. Esto indica la importancia de un diagnóstico a tiempo para comenzar un tratamiento individualizado y, al mismo tiempo, grupal, debido a la importancia del grupo de apoyo


It is very common to find pathologies due to substance use and another pathologies at the same time in people with substance dependence. This is known as Dual Diagnosis. Depression, due to the high prevalence in dependencies, is one of the most frequently pathologies associated with consumption. This study details the social, consumption and psychological characteristics of a sample of 34 participants which were in internal regimen in the therapeutic community of Los Palacios (Seville). The prevalence and level of depression of the participants are also examined using Beck Depression Inventory (BDI), and the relation between the score of this test and the characteristics detailed in the study. The results achieved in BDI showed a high prevalence of depression (55.88%). In addition, the study shows the influence of support networks on the level of depression. It denotes how important is an early diagnosis to begin individualized and, at the same time, group treatment, due to the importance of the support group


Asunto(s)
Humanos , Masculino , Adulto Joven , Adulto , Persona de Mediana Edad , Diagnóstico Dual (Psiquiatría)/métodos , Trastornos Relacionados con Sustancias/psicología , Depresión/epidemiología , Conducta Adictiva/diagnóstico , Conducta Adictiva/psicología , Grupos de Autoayuda , Depresión/psicología
17.
Elife ; 82019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31343403

RESUMEN

Rotavirus genome replication and assembly take place in cytoplasmic electron dense inclusions termed viroplasms (VPs). Previous conventional optical microscopy studies observing the intracellular distribution of rotavirus proteins and their organization in VPs have lacked molecular-scale spatial resolution, due to inherent spatial resolution constraints. In this work we employed super-resolution microscopy to reveal the nanometric-scale organization of VPs formed during rotavirus infection, and quantitatively describe the structural organization of seven viral proteins within and around the VPs. The observed viral components are spatially organized as five concentric layers, in which NSP5 localizes at the center of the VPs, surrounded by a layer of NSP2 and NSP4 proteins, followed by an intermediate zone comprised of the VP1, VP2, VP6. In the outermost zone, we observed a ring of VP4 and finally a layer of VP7. These findings show that rotavirus VPs are highly organized organelles.


Asunto(s)
Células Epiteliales/virología , Rotavirus/crecimiento & desarrollo , Proteínas Virales/análisis , Replicación Viral , Animales , Línea Celular , Macaca mulatta , Microscopía Fluorescente , Análisis Espacial
18.
Methods Cell Biol ; 151: 473-486, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30948027

RESUMEN

In many species, sperm must locate the female gamete to achieve fertilization. Molecules diffusing from the egg envelope, or the female genital tract, guide the sperm toward the oocyte through a process called chemotaxis. Sperm chemotaxis has been studied for more than 100 years being a widespread phenomenon present from lower plants to mammals. This process has been mostly studied in external fertilizers where gametes undergo a significant dilution, as compared to internal fertilizers where the encounter is more defined by the topology of the female tract and only a small fraction of sperm appear to chemotactically respond. Here, we summarize the main methods to measure sperm swimming responses to a chemoattractant, both in populations and in individual sperm. We discuss a novel chemotactic index (CI) to score sperm chemotaxis in external fertilizers having circular trajectories. This CI is based on the sperm progressive displacement and its orientation angle to the chemoattractant source.


Asunto(s)
Quimiotaxis/genética , Fertilización/genética , Motilidad Espermática/genética , Animales , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Desarrollo de la Planta
19.
Commun Biol ; 2: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854480

RESUMEN

Store-operated calcium entry (SOCE) is an essential calcium influx mechanism in animal cells. One of the most important auto regulatory control systems involves calcium-dependent inactivation (CDI) of the Orai channel, which prevents excessive calcium influx. In the present study we analyze the role of two channels in the induction of CDI on Orai1. Here we show that calcium entering through freely diffusing TRPV1 channels induce strong CDI on Orai1 while calcium entering through P2X4 channel does not. TRPV1 can induce CDI on Orai1 because both channels were found in close proximity in the cell membrane. This was not observed with P2X4 channels. To our knowledge, this is the first study demonstrating that calcium arising from different channels may contribute to the modulation of Orai1 through CDI in freely diffusing single channels of living cells. Our results highlight the role of TRPV1-mediated CDI on Orai1 in cell migration and wound healing.


Asunto(s)
Calcio/metabolismo , Proteína ORAI1/metabolismo , Canales Catiónicos TRPV/metabolismo , Cicatrización de Heridas , Señalización del Calcio , Movimiento Celular/genética , Células Cultivadas , Fenómenos Electrofisiológicos , Expresión Génica , Genes Reporteros , Humanos , Proteínas Recombinantes de Fusión/metabolismo
20.
J Cell Sci ; 131(21)2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30301778

RESUMEN

Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Acrosoma/metabolismo , Citoesqueleto de Actina/metabolismo , Espermatozoides/metabolismo , Animales , Exocitosis , Masculino , Ratones , Imagen Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...