Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 13(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999202

RESUMEN

Metabolic disease is a significant risk factor for severe COVID-19 infection, but the contributing pathways are not yet fully elucidated. Using data from two randomized controlled trials across 13 U.S. academic centers, our goal was to characterize metabolic features that predict severe COVID-19 and define a novel baseline metabolomic signature. Individuals (n = 133) were dichotomized as having mild or moderate/severe COVID-19 disease based on the WHO ordinal scale. Blood samples were analyzed using the Biocrates platform, providing 630 targeted metabolites for analysis. Resampling techniques and machine learning models were used to determine metabolomic features associated with severe disease. Ingenuity Pathway Analysis (IPA) was used for functional enrichment analysis. To aid in clinical decision making, we created baseline metabolomics signatures of low-correlated molecules. Multivariable logistic regression models were fit to associate these signatures with severe disease on training data. A three-metabolite signature, lysophosphatidylcholine a C17:0, dihydroceramide (d18:0/24:1), and triacylglyceride (20:4_36:4), resulted in the best discrimination performance with an average test AUROC of 0.978 and F1 score of 0.942. Pathways related to amino acids were significantly enriched from the IPA analyses, and the mitogen-activated protein kinase kinase 5 (MAP2K5) was differentially activated between groups. In conclusion, metabolites related to lipid metabolism efficiently discriminated between mild vs. moderate/severe disease. SDMA and GABA demonstrated the potential to discriminate between these two groups as well. The mitogen-activated protein kinase kinase 5 (MAP2K5) regulator is differentially activated between groups, suggesting further investigation as a potential therapeutic pathway.

2.
Data Brief ; 45: 108591, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36164307

RESUMEN

The effects of early-life iron deficiency anemia (IDA) extend past the blood and include both short- and long-term adverse effects on many tissues including the brain. Prior to IDA, iron deficiency (ID) can cause similar tissue effects, but a sensitive biomarker of iron-dependent brain health is lacking. To determine serum and CSF biomarkers of ID-induced metabolic dysfunction we performed proteomic and metabolomic analysis of serum and CSF at 4- and 6- months from a nonhuman primate model of infantile IDA. LC/MS/MS analyses identified a total of 227 metabolites and 205 proteins in serum. In CSF, we measured 210 metabolites and 1,560 proteins. Data were either processed from a Q-Exactive (Thermo Scientific, Waltham, MA) through Progenesis QI with accurate mass and retention time comparisons to a proprietary small molecule database and Metlin or with raw files imported directly from a Fusion Orbitrap (Thermo Scientific, Waltham, MA) through Sequest in Proteome Discoverer 2.4.0.305 (Thermo Scientific, Waltham, MA) with peptide matches through the latest Rhesus Macaque HMDB database. Metabolite and protein identifiers, p-values, and q-values were utilized for molecular pathway analysis with Ingenuity Pathways Analysis (IPA). We applied multiway distance weighted discrimination (DWD) to identify a weighted sum of the features (proteins or metabolites) that distinguish ID from IS at 4-months (pre-anemic period) and 6-months of age (anemic).

3.
Front Oncol ; 12: 862250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707369

RESUMEN

Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.

4.
Proteomics ; 22(13-14): e2200018, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35633524

RESUMEN

IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.


Asunto(s)
Fibrosis Pulmonar Idiopática , Células Madre Mesenquimatosas , Animales , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína Nodal/genética , Proteína Nodal/metabolismo , Fenotipo , Proteoma/metabolismo , Proteómica
5.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R486-R500, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35271351

RESUMEN

The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.


Asunto(s)
Anemia Ferropénica , Anemia , Deficiencias de Hierro , Anemia Ferropénica/líquido cefalorraquídeo , Animales , Biomarcadores , Humanos , Hierro , Macaca mulatta , Proteómica
6.
Curr Protoc Immunol ; 130(1): e104, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931655

RESUMEN

In this article we describe the use of pharmacological and genetic tools coupled with immunoblotting (Western blotting) and targeted mass spectrometry to quantify immune signaling and cell activation mediated by tyrosine kinases. Transfer of the ATP γ phosphate to a protein tyrosine residue activates signaling cascades regulating the differentiation, survival, and effector functions of all cells, with unique roles in immune antigen receptor, polarization, and other signaling pathways. Defining the substrates and scaffolding interactions of tyrosine kinases is critical for revealing and therapeutically manipulating mechanisms of immune regulation. Quantitative analysis of the amplitude and kinetics of these effects is becoming ever more accessible experimentally and increasingly important for predicting complex downstream effects of therapeutics and for building computational models. Secondarily, quantitative analysis is increasingly expected by reviewers and journal editors, and statistical analysis of biological replicates can bolster claims of experimental rigor and reproducibility. Here we outline methods for perturbing tyrosine kinase activity in cells and quantifying protein phosphorylation in lysates and immunoprecipitates. The immunoblotting techniques are a guide to probing the dynamics of protein abundance, protein-protein interactions, and changes in post-translational modification. Immunoprecipitated protein complexes can also be subjected to targeted mass spectrometry to probe novel sites of modification and multiply modified or understudied proteins that cannot be resolved by immunoblotting. Together, these protocols form a framework for identifying the unique contributions of tyrosine kinases to cell activation and elucidating the mechanisms governing immune cell regulation in health and disease. © 2020 The Authors. Basic Protocol 1: Quantifying protein phosphorylation via immunoblotting and near-infrared imaging Alternate Protocol: Visualizing immunoblots using chemiluminescence Basic Protocol 2: Enriching target proteins and isolation of protein complexes by immunoprecipitation Support Protocol: Covalent conjugation of antibodies to functionalized beads Basic Protocol 3: Quantifying proteins and post-translational modifications by targeted mass spectrometry.


Asunto(s)
Bioensayo/métodos , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Western Blotting/métodos , Proteínas Portadoras/metabolismo , Humanos , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Imagen Molecular , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/aislamiento & purificación
8.
Sci Rep ; 10(1): 3869, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123248

RESUMEN

Neurofibrillary tangles are a pathological hallmark of Alzheimer's disease, and their levels correlate with the severity of cognitive dysfunction in humans. However, experimental evidence suggests that soluble tau species cause cognitive deficits and memory impairment. Our recent study suggests that caspase-2 (Casp2)-catalyzed tau cleavage at aspartate 314 mediates synaptic dysfunction and memory impairment in mouse and cellular models of neurodegenerative disorders. Δtau314, the C-terminally-truncated cleavage products, are soluble and present in human brain. In addition, levels of Δtau314 proteins are elevated in the brain of the cognitively impaired individuals compared to the cognitively normal individuals, indicating a possible role for Δtau314 proteins in cognitive deterioration. Here we show that (1) Δtau314 proteins are present in the inferior temporal gyrus of human brains; (2) Δtau314 proteins are generated from all six tau splicing isoforms, (3) levels of both Casp2 and Δtau314 proteins are elevated in cognitively impaired individuals compared to cognitively normal individuals, and (4) levels of Δtau314 proteins show a modest predictive value for dementia. These findings advance our understanding of the characteristics of Δtau314 proteins and their relevance to cognitive dysfunction and shed light on the contribution of Casp2-mediated Δtau314 production to cognitive deterioration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Caspasa 2/genética , Caspasa 2/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Lóbulo Temporal/patología , Proteínas tau/genética
9.
Elife ; 82019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31282857

RESUMEN

The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.


Asunto(s)
Macrófagos/metabolismo , Mastocitos/metabolismo , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Familia-src Quinasas/metabolismo , Animales , Humanos , Células Jurkat , Ratones Noqueados , Fosforilación , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/genética , Ubiquitina/metabolismo , Familia-src Quinasas/genética
10.
J Proteome Res ; 17(12): 4329-4336, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30130115

RESUMEN

The Chromosome-centric Human Proteome Project (C-HPP) seeks to comprehensively characterize all protein products coded by the genome, including those expressed sequence variants confirmed via proteogenomics methods. The closely related Biology/Disease-driven Human Proteome Project (B/D-HPP) seeks to understand the biological and pathological associations of expressed protein products, especially those carrying sequence variants that may be drivers of disease. To achieve these objectives, informatics tools are required that interpret potential functional or disease implications of variant protein sequence detected via proteogenomics. Toward this end, we have developed an automated workflow within the Galaxy for Proteomics (Galaxy-P) platform, which leverages the Cancer-Related Analysis of Variants Toolkit (CRAVAT) and makes it interoperable with proteogenomic results. Protein sequence variants confirmed by proteogenomics are assessed for potential structure-function effects as well as associations with cancer using CRAVAT's rich suite of functionalities, including visualization of results directly within the Galaxy user interface. We demonstrate the effectiveness of this workflow on proteogenomic results generated from an MCF7 breast cancer cell line. Our free and open software should enable improved interpretation of the functional and pathological effects of protein sequence variants detected via proteogenomics, acting as a bridge between the C-HPP and B/D-HPP.


Asunto(s)
Proteogenómica/métodos , Proteoma , Programas Informáticos , Secuencia de Aminoácidos , Línea Celular Tumoral , Cromosomas Humanos/genética , Variación Genética , Humanos , Células MCF-7 , Neoplasias/genética , Flujo de Trabajo
11.
Sci Rep ; 7(1): 18078, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273787

RESUMEN

Recent evidence described 6-methyladenine (6 mA) as a novel epigenetic regulator in a variety of multicellular species, including rodents; however, its capacity to influence gene expression in the mammalian brain remains unknown. We examined if 6 mA is present and regulated by early life stress associated with predator odor exposure (POE) within the developing rat amygdala. Our results provide evidence that 6 mA is present in the mammalian brain, is altered within the Htr2a gene promoter by early life stress and biological sex, and increased 6 mA is associated with gene repression. These data suggest that methylation of adenosine within mammalian DNA may be used as an additional epigenetic biomarker for investigating the development of stress-induced neuropathology.


Asunto(s)
Adenina/análogos & derivados , Amígdala del Cerebelo/metabolismo , Receptores de Serotonina/metabolismo , Estrés Psicológico/metabolismo , Adenina/metabolismo , Animales , Ansiedad/metabolismo , Conducta Animal/fisiología , Biomarcadores/metabolismo , Metilación de ADN , Epigénesis Genética , Femenino , Masculino , Odorantes , Regiones Promotoras Genéticas , Ratas , Factores Sexuales
12.
Cancer Res ; 77(21): e43-e46, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092937

RESUMEN

Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry-based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub. Cancer Res; 77(21); e43-46. ©2017 AACR.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Neoplasias/genética , Programas Informáticos , Genoma Humano , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem , Transcriptoma/genética
13.
Mol Cell Proteomics ; 15(3): 810-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26362317

RESUMEN

Defective copper excretion from hepatocytes in Wilson's disease causes accumulation of copper ions with increased generation of reactive oxygen species via the Fenton-type reaction. Here we developed a nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry coupled with the isotope-dilution method for the simultaneous quantification of oxidatively induced DNA modifications. This method enabled measurement, in microgram quantities of DNA, of four oxidative stress-induced lesions, including direct ROS-induced purine cyclonucleosides (cPus) and two exocyclic adducts induced by byproducts of lipid peroxidation, i.e. 1,N(6)-etheno-2'-deoxyadenosine (εdA) and 1,N(2)-etheno-2'-deoxyguanosine (εdG). Analysis of liver tissues of Long-Evans Cinnamon rats, which constitute an animal model of human Wilson's disease, and their healthy counterparts [i.e. Long-Evans Agouti rats] showed significantly higher levels of all four DNA lesions in Long-Evans Cinnamon than Long-Evans Agouti rats. Moreover, cPus were present at much higher levels than εdA and εdG lesions. In contrast, the level of 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), an oxidation product of 5-methyl-2'-deoxycytidine (5-mdC), was markedly lower in the liver tissues of Long-Evans Cinnamon than Long-Evans Agouti rats, though no differences were observed for the levels of 5-mdC. In vitro biochemical assay showed that Cu(2+) ions could directly inhibit the activity of Tet enzymes. Together, these results suggest that aberrant copper accumulation may perturb genomic stability by elevating oxidatively induced DNA lesions, and by altering epigenetic pathways of gene regulation.


Asunto(s)
Cromatografía Liquida/métodos , Cobre/metabolismo , ADN/metabolismo , Degeneración Hepatolenticular/genética , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Inestabilidad Genómica , Degeneración Hepatolenticular/metabolismo , Humanos , Peroxidación de Lípido , Hígado/metabolismo , Nanotecnología , Oxidación-Reducción , Ratas , Ratas Long-Evans , Especies Reactivas de Oxígeno/metabolismo
14.
J Am Chem Soc ; 136(33): 11582-5, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25073028

RESUMEN

Oxidation of 5-methylcytosine in DNA by ten-eleven translocation (Tet) family of enzymes has been demonstrated to play a significant role in epigenetic regulation in mammals. We found that Tet enzymes also possess the activity of catalyzing the formation of 5-hydroxymethylcytidine (5-hmrC) in RNA in vitro. In addition, the catalytic domains of all three Tet enzymes as well as full-length Tet3 could induce the formation of 5-hmrC in human cells. Moreover, 5-hmrC was present at appreciable levels (∼1 per 5000 5-methylcytidine) in RNA of mammalian cells and tissues. Our results suggest the involvement of this oxidation in RNA biology.


Asunto(s)
Citosina/análogos & derivados , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Citosina/biosíntesis , Citosina/química , Citosina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Dioxigenasas/química , Dioxigenasas/deficiencia , Células Madre Embrionarias/metabolismo , Células HEK293 , Humanos , Ratones , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/deficiencia , ARN/química
15.
J Am Soc Mass Spectrom ; 25(7): 1167-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24664806

RESUMEN

Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O(2), N3, and O(4)) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O(2) position and, to a much lesser extent, the O(4) position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.


Asunto(s)
Iones/química , Oligodesoxirribonucleótidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Timidina/química , Modelos Moleculares
16.
Chem Res Toxicol ; 26(9): 1361-6, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23961697

RESUMEN

Exposure of aqueous solutions of DNA to X- or γ-rays, which induces the hydroxyl radical as one of the major reactive oxygen species (ROS), can result in the generation of a battery of single-nucleobase and bulky DNA lesions. These include the (5'R) and (5'S) diastereomers of 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG), which were also found to be present at appreciable levels in DNA isolated from mammalian cells and tissues. However, it remains unexplored how efficiently the cdA and cdG can be induced by Fenton-type reagents. By employing HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) with the use of the isotope-dilution technique, here we demonstrated that treatment of calf thymus DNA with Cu(II) or Fe(II), together with H2O2 and ascorbate, could lead to dose-responsive formation of both the (5'R) and (5'S) diastereomers of cdA and cdG, though the yields of cdG were 2-4 orders of magnitude lower than that of 8-oxo-7,8-dihydro-2'-deoxyguanosine. This result suggests that the Fenton reaction may constitute an important endogenous source for the formation of the cdA and cdG. Additionally, the (5'R) diastereomers of cdA and cdG were induced at markedly higher levels than the (5'S) counterparts. This latter finding, in conjunction with the previous observations of similar or greater levels of the (5'S) than (5'R) diastereomers of the two lesions in mammalian tissues, furnishes an additional line of evidence to support the more efficient repair of the (5'R) diastereomers of the purine cyclonucleosides in mammalian cells.


Asunto(s)
ADN/química , Desoxiadenosinas/biosíntesis , Desoxiguanosina/análogos & derivados , Peróxido de Hidrógeno/química , Hierro/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , ADN/efectos de los fármacos , ADN/aislamiento & purificación , Desoxiadenosinas/análisis , Desoxiguanosina/análisis , Desoxiguanosina/biosíntesis , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
17.
Nucleic Acids Res ; 41(13): 6421-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658232

RESUMEN

Recent studies showed that Ten-eleven translocation (Tet) family dioxygenases can oxidize 5-methyl-2'-deoxycytidine (5-mdC) in DNA to yield the 5-hydroxymethyl, 5-formyl and 5-carboxyl derivatives of 2'-deoxycytidine (5-HmdC, 5-FodC and 5-CadC). 5-HmdC in DNA may be enzymatically deaminated to yield 5-hydroxymethyl-2'-deoxyuridine (5-HmdU). After their formation at CpG dinucleotide sites, these oxidized pyrimidine nucleosides, particularly 5-FodC, 5-CadC, and 5-HmdU, may be cleaved from DNA by thymine DNA glycosylase, and subsequent action of base-excision repair machinery restores unmethylated cytosine. These processes are proposed to be important in active DNA cytosine demethylation in mammals. Here we used a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) method, along with the use of stable isotope-labeled standards, for accurate measurements of 5-HmdC, 5-FodC, 5-CadC and 5-HmdU in genomic DNA of cultured human cells and multiple mammalian tissues. We found that overexpression of the catalytic domain of human Tet1 led to marked increases in the levels of 5-HmdC, 5-FodC and 5-CadC, but only a modest increase in 5-HmdU, in genomic DNA of HEK293T cells. Moreover, 5-HmdC is present at a level that is approximately 2-3 and 3-4 orders of magnitude greater than 5-FodC and 5-CadC, respectively, and 35-400 times greater than 5-HmdU in the mouse brain and skin, and human brain. The robust analytical method built a solid foundation for dissecting the molecular mechanisms of active cytosine demethylation, for measuring these 5-mdC derivatives and assessing their involvement in epigenetic regulation in other organisms and for examining whether these 5-mdC derivatives can be used as biomarkers for human diseases.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/química , Dioxigenasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/química , Animales , Química Encefálica , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Desoxicitidina/análogos & derivados , Desoxicitidina/análisis , Células HEK293 , Humanos , Ratones , Oxigenasas de Función Mixta , Oxidación-Reducción , Piel/química , Espectrometría de Masas en Tándem , Timidina/análogos & derivados , Timidina/análisis
18.
Nature ; 491(7424): 449-53, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23123854

RESUMEN

People with pale skin, red hair, freckles and an inability to tan--the 'red hair/fair skin' phenotype--are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAF(V600E), into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r(e/e) background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1r(e/e) mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1r(e/e) mouse skin. These data suggest that the pheomelanin pigment pathway produces ultraviolet-radiation-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. Although protection from ultraviolet radiation remains important, additional strategies may be required for optimal melanoma prevention.


Asunto(s)
Color del Cabello/genética , Melanoma/genética , Pigmentación de la Piel/genética , Rayos Ultravioleta , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Melaninas/metabolismo , Ratones , Ratones Endogámicos C57BL , Monofenol Monooxigenasa/genética , Peroxidasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Receptor de Melanocortina Tipo 1/genética , Sulfonamidas/farmacología , Análisis de Supervivencia , Células Tumorales Cultivadas
19.
Immunity ; 36(3): 401-14, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22342844

RESUMEN

We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1ß (IL-1ß). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1ß production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1ß secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome.


Asunto(s)
Apoptosis/inmunología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Inflamasomas/inmunología , Inflamasomas/metabolismo , Animales , Expresión Génica , Interleucina-1beta/biosíntesis , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Transducción de Señal
20.
Anal Chem ; 83(6): 2201-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21323344

RESUMEN

The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Daño del ADN , Espectrometría de Masas en Tándem/métodos , Animales , Encéfalo/citología , Encéfalo/metabolismo , Reparación del ADN/genética , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Regulación de la Expresión Génica , Isótopos , Hígado/citología , Hígado/metabolismo , Oxidación-Reducción , Ratas , Ratas Endogámicas LEC , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estereoisomerismo , Timidina/análogos & derivados , Timidina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA