Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 7(47): 77696-77706, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27776337

RESUMEN

SPARC is a matrix protein that mediates interactions between cells and the microenvironment. In cancer, SPARC may either promote or inhibit tumor growth depending upon the tumor type. In neuroblastoma, SPARC is expressed in the stromal Schwannian cells and functions as a tumor suppressor. Here, we developed a novel in vivo model of stroma-rich neuroblastoma using non-tumorigenic SHEP cells with modulated levels of SPARC, mixed with tumorigenic KCNR cells. Tumors with stroma-derived SPARC displayed suppressed growth, inhibited angiogenesis and increased lipid accumulation. Based on the described chaperone function of SPARC, we hypothesized that SPARC binds albumin complexed with fatty acids and transports them to tumors. We show that SPARC binds albumin with Kd=18.9±2.3 uM, and enhances endothelial cell internalization and transendothelial transport of albumin in vitro. We also demonstrate that lipids induce toxicity in neuroblastoma cells and show that lipotoxicity is increased when cells are cultured in hypoxic conditions. Studies investigating the therapeutic potential of SPARC are warranted.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Neuroblastoma/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Ácido Palmítico/farmacología , Albúmina Sérica Bovina/metabolismo , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Terapia Genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Modelos Biológicos , Neuroblastoma/genética , Neuroblastoma/terapia , Ácido Palmítico/química , Albúmina Sérica Bovina/química
2.
Pediatr Blood Cancer ; 59(4): 642-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22147414

RESUMEN

BACKGROUND: More effective therapy for children with high-risk neuroblastoma is desperately needed. Preclinical studies have shown that neuroblastoma tumor growth can be inhibited by agents that block angiogenesis. We hypothesized that drugs which target both neuroblastoma cells and tumor angiogenesis would have potent anti-tumor activity. In this study we tested the effects of sorafenib, a multi-kinase inhibitor, on neuroblastoma cell proliferation and signaling, and in mice with subcutaneous human neuroblastoma xenografts or orthotopic adrenal tumors. PROCEDURE: Mice with subcutaneous neuroblastoma xenografts or orthotopic adrenal tumors were treated with sorafenib, and tumor growth rates were measured. Blood vessel architecture and vascular density were evaluated histologically in treated and control neuroblastoma tumors. The in vitro effects of sorafenib on neuroblastoma proliferation, cell cycle, and signaling were also evaluated. RESULTS: Sorafenib inhibited tumor growth in mice with subcutaneous and orthotopic adrenal tumors. Decreased numbers of cycling neuroblastoma cells and tumor blood vessels were seen in treated versus control tumors, and the blood vessels in the treated tumors had more normal architecture. Sorafenib treatment also decreased neuroblastoma cell proliferation, attenuated ERK signaling, and enhanced G(1) /G(0) cell cycle arrest in vitro. CONCLUSIONS: Our results demonstrate that sorafenib inhibits the growth of neuroblastoma tumors by targeting both neuroblastoma cells and tumor blood vessels. Single agent sorafenib should be evaluated in future phase II neuroblastoma studies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Bencenosulfonatos/farmacología , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica/patología , Neuroblastoma/irrigación sanguínea , Neuroblastoma/fisiopatología , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Sorafenib
3.
PLoS One ; 6(9): e23880, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949685

RESUMEN

Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca(2+) concentrations are low, high extracellular concentrations of Ca(2+) activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca(2+) concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimensional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the pathogenesis of matrix-associated disorders and lead to the novel treatment strategies.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Chaperonas Moleculares/metabolismo , Osteonectina/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Colágeno/metabolismo , Colágeno/farmacocinética , Espacio Extracelular/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Microscopía Fluorescente , Células 3T3 NIH , Osteonectina/genética , Osteonectina/farmacocinética , Transporte de Proteínas
4.
Pediatr Blood Cancer ; 56(1): 164-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20860039

RESUMEN

The quinoxaline anti-tumor agent (R+)XK469 mediates its effects by topoisomerase IIB inhibition. This report describes a 14-year old with relapsed neuroblastoma who experienced disease stabilization for 14 months while receiving (R+)XK469 monotherapy. Due to this favorable response, laboratory studies were undertaken to determine efficacy in the preclinical setting. (R+)XK469 inhibited proliferation, caused G(2) cell cycle arrest of neuroblastoma cells in vitro, and inhibited growth of neuroblastoma xenograft tumors. These preclinical results, coupled with the favorable clinical response, demonstrate that (R+)XK469 and similar anti-tumor agents may be effective in the treatment of high-risk neuroblastoma and warrant further testing.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Quinoxalinas/farmacología , Adolescente , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Resultado Fatal , Humanos , Metástasis de la Neoplasia , Neuroblastoma/patología , Quinoxalinas/uso terapéutico , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
BMC Cancer ; 10: 286, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20546602

RESUMEN

BACKGROUND: Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. METHODS: Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. RESULTS: Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation status and the histone code in the THBS-1 promoter modifies cell morphology, and inhibits their ability to form colonies in soft agar. CONCLUSION: Our results suggest that epigenetic aberrations contribute to NB phenotype, and that tumorigenic properties can be inhibited by reversing the epigenetic changes with 5-Aza-dC.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Acetilación , Azacitidina/análogos & derivados , Azacitidina/farmacología , Línea Celular Tumoral , Proliferación Celular , Forma de la Célula , Inmunoprecipitación de Cromatina , Metilación de ADN , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/metabolismo , Decitabina , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genotipo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fenotipo , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Trombospondina 1/genética , Transfección , Ácido Valproico/farmacología
6.
Mol Cancer ; 9: 138, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20525313

RESUMEN

BACKGROUND: New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC) and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E) potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. RESULTS: In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. CONCLUSION: Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neuroblastoma/tratamiento farmacológico , Osteonectina/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Células Endoteliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neuroblastoma/irrigación sanguínea , Péptidos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Cancer ; 118(2): 310-6, 2006 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16052522

RESUMEN

Secreted protein, acidic and rich in cysteine (SPARC), is a multifunctional matricellular glycoprotein. In vitro, SPARC has antiangiogenic properties, including the ability to inhibit the proliferation and migration of endothelial cells stimulated by bFGF and VEGF. Previously, we demonstrated that platelet-derived SPARC also inhibits angiogenesis and impairs the growth of neuroblastoma tumors in vivo. In the present study, we produced rhSPARC in the transformed human embryonic kidney cell line 293 and show that the recombinant molecule retains its ability to inhibit angiogenesis. Although 293 cell proliferation was not affected by exogenous expression of SPARC in vitro, growth of tumors formed by SPARC-transfected 293 cells was significantly impaired compared to tumors comprised of wild-type cells or 293 cells transfected with a control vector. Consistent with its function as an angiogenesis inhibitor, significantly fewer blood vessels were seen in SPARC-transfected 293 tumors compared to controls, and these tumors contained increased numbers of apoptotic cells. Light microscopy revealed small nests of tumor cells surrounded by abundant stromal tissue in xenografts with SPARC expression, whereas control tumors were comprised largely of neoplastic cells with scant stroma. Mature, covalently cross-linked collagen was detected in SPARC-transfected 293 xenografts but not in control tumors. Our studies suggest that SPARC may regulate tumor growth by inhibiting angiogenesis, inducing tumor cell apoptosis and mediating changes in the deposition and organization of the tumor microenvironment.


Asunto(s)
Proliferación Celular , Neovascularización Patológica , Osteonectina/biosíntesis , Osteonectina/fisiología , Animales , Apoptosis , Matriz Extracelular/metabolismo , Humanos , Riñón/citología , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/patología , Ratones , Ratones Desnudos , Neuroblastoma , Transfección , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...