Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Integr Neurosci ; 18: 1359099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808069

RESUMEN

Introduction: Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods: Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results: In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion: Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.

2.
Autism Res ; 17(2): 266-279, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278763

RESUMEN

Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9 years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Niño , Humanos , Adolescente , Trastorno Autístico/diagnóstico por imagen , Nocicepción , Tronco Encefálico/diagnóstico por imagen , Formación Reticular
3.
Brain Imaging Behav ; 18(1): 159-170, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955810

RESUMEN

This investigation explores memory performance using the California Verbal Learning Test in relation to morphometric and connectivity measures of the memory network in severe traumatic brain injury. Twenty-two adolescents with severe traumatic brain injury were recruited for multimodal MRI scanning 1-2 years post-injury at 13 participating sites. Analyses included hippocampal volume derived from anatomical T1-weighted imaging, fornix white matter microstructure from diffusion tensor imaging, and hippocampal resting-state functional magnetic resonance imaging connectivity as well as diffusion-based structural connectivity. A typically developing control cohort of forty-nine age-matched children also underwent scanning and neurocognitive assessment. Results showed hippocampus volume was decreased in traumatic brain injury with respect to controls. Further, hippocampal volume loss was associated with worse performance on memory and learning in traumatic brain injury subjects. Similarly, hippocampal fornix fractional anisotropy was reduced in traumatic brain injury with respect to controls, while decreased fractional anisotropy in the hippocampal fornix also was associated with worse performance on memory and learning in traumatic brain injury subjects. Additionally, reduced structural connectivity of left hippocampus to thalamus and calcarine sulcus was associated with memory and learning in traumatic brain injury subjects. Functional connectivity in the left hippocampal network was also associated with memory and learning in traumatic brain injury subjects. These regional findings from a multi-modal neuroimaging approach should not only be useful for gaining valuable insight into traumatic brain injury induced memory and learning disfunction, but may also be informative for monitoring injury progression, recovery, and for developing rehabilitation as well as therapy strategies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Adolescente , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Lesiones Traumáticas del Encéfalo/patología , Hipocampo/patología , Neuroimagen
4.
Front Neurosci ; 17: 1231719, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829720

RESUMEN

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods: Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results: All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion: Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.

5.
Neuroimage ; 273: 120117, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062373

RESUMEN

Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength. Therefore, this study employed high resolution, multi-shell diffusion and quantitative T1 imaging to examine how variations in lateral grasping, proprioception input, and cortico-cerebellar modification network white matter microstructure are associated with variations in grip strength across 70 children. Results indicated that stronger grip strength was associated with higher lateral grasping and proprioception input network fractional anisotropy and R1, indirect measures consistent with stronger microstructural coherence and increased myelination. No relationships were found in the cerebellar modification network. These results provide a neurobiological mechanism of grip behavior in children which suggests that increased myelination of cortical sensory and motor pathways is associated with stronger grip. This neurobiological mechanism may be a signature of pediatric neuro-motor behavior more broadly as evidenced by the previously demonstrated relationships between grip strength and behavioral outcome measures across a variety of clinical and non-clinical populations.


Asunto(s)
Encéfalo , Sustancia Blanca , Humanos , Niño , Sustancia Blanca/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Fuerza de la Mano
6.
Mol Autism ; 13(1): 48, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536467

RESUMEN

BACKGROUND: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS: Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11 years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS: Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS: All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS: These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations.


Asunto(s)
Trastorno Autístico , Sustancia Blanca , Humanos , Niño , Encéfalo , Calidad de Vida , Tronco Encefálico
7.
Neuroimage ; 260: 119475, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840117

RESUMEN

Imaging-based quantitative measures from diffusion-weighted MRI (dMRI) offer the ability to non-invasively extract microscopic information from human brain tissues. Group-level comparisons of such measures represent an important approach to investigate abnormal brain conditions. These types of analyses are especially useful when the regions of abnormality spatially coincide across subjects. When this is not true, approaches for individualized analyses are necessary. Here we present a framework for single-subject multidimensional analysis based on the Mahalanobis distance. This is conducted along specific white matter pathways represented by tractography-derived streamline bundles. A definition for abnormality was constructed from Wilk's criterion, which accounts for normative sample size, number of features used in the Mahalanobis distance, and multiple comparisons. One example of a condition exhibiting high heterogeneity across subjects is traumatic brain injury (TBI). Using the Mahalanobis distance computed from the three eigenvalues of the diffusion tensor along the cingulum, uncinate, and parcellated corpus callosum tractograms, 8 severe TBI patients were individually compared to a normative sample of 49 healthy controls. For all TBI patients, the analyses showed statistically significant deviations from the normative data at one or multiple locations along the analyzed bundles. The detected anomalies were widespread across the analyzed tracts, consistent with the expected heterogeneity that is hallmark of TBI. Each of the controls subjects was also compared to the remaining 48 subjects in the control group in a leave-one-out fashion. Only two segments were identified as abnormal out of the entire analysis in the control group, thus the method also demonstrated good specificity.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Sustancia Blanca/diagnóstico por imagen
8.
Dev Neurosci ; 44(4-5): 394-411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613558

RESUMEN

The variability of severity in hypoxia-ischemia (HI)-induced brain injury among research subjects is a major challenge in developmental brain injury research. Our laboratory developed a novel injury scoring tool based on our gross pathological observations during hippocampal extraction. The hippocampi received scores of 0-6 with 0 being no injury and 6 being severe injury post-HI. The hippocampi exposed to sham surgery were grouped as having no injury. We have validated the injury scoring tool with T2-weighted MRI analysis of percent hippocampal/hemispheric tissue loss and cell survival/death markers after exposing the neonatal mice to Vannucci's rodent model of neonatal HI. In addition, we have isolated hippocampal nuclei and quantified the percent good quality nuclei to provide an example of utilization of our novel injury scoring tool. Our novel injury scores correlated significantly with percent hippocampal and hemispheric tissue loss, cell survival/death markers, and percent good quality nuclei. Caspase-3 and Poly (ADP-ribose) polymerase-1 (PARP1) have been implicated in different cell death pathways in response to neonatal HI. Another gene, sirtuin1 (SIRT1), has been demonstrated to have neuroprotective and anti-apoptotic properties. To assess the correlation between the severity of injury and genes involved in cell survival/death, we analyzed caspase-3, PARP1, and SIRT1 mRNA expressions in hippocampi 3 days post-HI and sham surgery, using quantitative reverse transcription polymerase chain reaction. The ipsilateral (IL) hippocampal caspase-3 and SIRT1 mRNA expressions post-HI were significantly higher than sham IL hippocampi and positively correlated with the novel injury scores in both males and females. We detected a statistically significant sex difference in IL hippocampal caspase-3 mRNA expression with comparable injury scores between males and females with higher expression in females.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Caspasa 3/metabolismo , Femenino , Humanos , Hipoxia-Isquemia Encefálica/patología , Isquemia , Masculino , Ratones , ARN Mensajero/metabolismo , Sirtuina 1
9.
Front Integr Neurosci ; 16: 804743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310466

RESUMEN

Diffusion-weighted magnetic resonance imaging (dMRI) of the brainstem is technically challenging, especially in young autistic children as nearby tissue-air interfaces and motion (voluntary and physiological) can lead to artifacts. This limits the availability of high-resolution images, which are desirable for improving the ability to study brainstem structures. Furthermore, inherently low signal-to-noise ratios, geometric distortions, and sensitivity to motion not related to molecular diffusion have resulted in limited techniques for high-resolution data acquisition compared to other modalities such as T1-weighted imaging. Here, we implement a method for achieving increased apparent spatial resolution in pediatric dMRI that hinges on accurate geometric distortion correction and on high fidelity within subject image registration between dMRI and magnetization prepared rapid acquisition gradient echo (MPnRAGE) images. We call this post-processing pipeline T1 weighted-diffusion fused, or "TiDi-Fused". Data used in this work consists of dMRI data (2.4 mm resolution, corrected using FSL's Topup) and T1-weighted (T1w) MPnRAGE anatomical data (1 mm resolution) acquired from 128 autistic and non-autistic children (ages 6-10 years old). Accurate correction of geometric distortion permitted for a further increase in apparent resolution of the dMRI scan via boundary-based registration to the MPnRAGE T1w. Estimation of fiber orientation distributions and further analyses were carried out in the T1w space. Data processed with the TiDi-Fused method were qualitatively and quantitatively compared to data processed with conventional dMRI processing methods. Results show the advantages of the TiDi-Fused pipeline including sharper brainstem gray-white matter tissue contrast, improved inter-subject spatial alignment for group analyses of dMRI based measures, accurate spatial alignment with histology-based imaging of the brainstem, reduced variability in brainstem-cerebellar white matter tracts, and more robust biologically plausible relationships between age and brainstem-cerebellar white matter tracts. Overall, this work identifies a promising pipeline for achieving high-resolution imaging of brainstem structures in pediatric and clinical populations who may not be able to endure long scan times. This pipeline may serve as a gateway for feasibly elucidating brainstem contributions to autism and other conditions.

10.
Brain Commun ; 3(3): fcab112, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34250479

RESUMEN

The human brain has demonstrated the power to structurally change as a result of movement-based interventions. However, it is unclear whether these structural brain changes differ in autistic individuals compared to non-autistic individuals. The purpose of the present study was to pilot a randomized controlled trial to investigate brain, balance, autism symptom severity and daily living skill changes that result from a biofeedback-based balance intervention in autistic adolescents (13-17 years old). Thirty-four autistic participants and 28 age-matched non-autistic participants underwent diagnostic testing and pre-training assessment (neuroimaging, cognitive, autism symptom severity and motor assessments) and were then randomly assigned to 6 weeks of a balance-training intervention or a sedentary-control condition. After the 6 weeks, neuroimaging, symptom severity and motor assessments were repeated. Results found that both the autistic and non-autistic participants demonstrated similar and significant increases in balance times with training. Furthermore, individuals in the balance-training condition showed significantly greater improvements in postural sway and reductions in autism symptom severity compared to individuals in the control condition. Daily living scores did not change with training, nor did we observe hypothesized changes to the microstructural properties of the corticospinal tract. However, follow-up voxel-based analyses found a wide range of balance-related structures that showed changes across the brain. Many of these brain changes were specific to the autistic participants compared to the non-autistic participants, suggesting distinct structural neuroplasticity in response to balance training in autistic participants. Altogether, these findings suggest that biofeedback-based balance training may target postural stability challenges, reduce core autism symptoms and influence neurobiological change. Future research is encouraged to examine the superior cerebellar peduncle in response to balance training and symptom severity changes in autistic individuals, as the current study produced overlapping findings in this brain region.

11.
Psychiatry Res Neuroimaging ; 283: 83-91, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30557783

RESUMEN

Autism spectrum disorder (ASD) is a complex and genetically heterogeneous neuropsychiatric disease affecting as many as 1 in 68 children. Large scale genetic sequencing of individuals along the autism spectrum has uncovered several genetic risk factors for ASD; however, understanding how, and to what extent, individual genes contribute to the overall disease phenotype remains unclear. Neuroimaging studies of ASD have revealed a wide spectrum of structural and functional perturbations that are thought to reflect, in part, the complex genetic heterogeneity underpinning ASD. These perturbations, in both preclinical models and clinical patients, were identified in preclinical genetic models and ASD patients when compared to control populations; however, few studies have directly explored intrinsic differences between the models themselves. To better understand the degree and extent to which individual genes associated with ASD differ in their contribution to global measures of white matter microstructure, diffusion tensor imaging (DTI) was acquired from three novel rat genetic models of ASD (Fmr1, Nrxn1, and Pten) and DTI parameters of fractional anisotropy, mean, axial, and radial diffusivity were measured. Subsequent whole-brain voxel-wise analysis comparing each genetic model to each other (Fmr1:Nrxn1; Fmr1:Pten; Nrxn1:Pten) identified no significant differences in any comparison for all diffusion parameters assessed (FA, AD, MD, RD).


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Modelos Genéticos , Animales , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Imagen de Difusión Tensora/métodos , Masculino , Neuroimagen/métodos , Proyectos Piloto , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...