Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 30, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263017

RESUMEN

BACKGROUND AND OBJECTIVES: 18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between ß-amyloid-accumulation and microglial activation in AD. METHODS: 49 patients with AD (29 females, all Aß-positive) and 15 Aß-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and ß-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional Aß-PET on TSPO-PET was used to determine the Aß-plaque-dependent microglial response (slope) and the Aß-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI). RESULTS: In AD, females showed higher mean cortical TSPO-PET z-scores (0.91 ± 0.49; males 0.30 ± 0.75; p = 0.002), while Aß-PET z-scores were similar. The Aß-plaque-independent microglial response was stronger in females with AD (+ 0.37 ± 0.38; males with AD - 0.33 ± 0.87; p = 0.006), pronounced at the prodromal stage. On the contrary, the Aß-plaque-dependent microglial response was not different between sexes. The Aß-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the Aß-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005). CONCLUSION: While microglia response to fibrillar Aß is similar between sexes, women with AD show a stronger Aß-plaque-independent microglia response. This sex difference in Aß-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the Aß-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Femenino , Masculino , Índice de Masa Corporal , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides , Obesidad , Receptores de GABA
2.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495886

RESUMEN

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Microglía/patología , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Proteínas tau , Receptores de GABA
3.
J Alzheimers Dis ; 92(3): 925-940, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36806502

RESUMEN

BACKGROUND: Cognitive reserve (CR) explains inter-individual differences in the impact of the neurodegenerative burden on cognitive functioning. A residual model was proposed to estimate CR more accurately than previous measures. However, associations between residual CR markers (CRM) and functional connectivity (FC) remain unexplored. OBJECTIVE: To explore the associations between the CRM and intrinsic network connectivity (INC) in resting-state networks along the neuropathological-continuum of Alzheimer's disease (ADN). METHODS: Three hundred eighteen participants from the DELCODE cohort were stratified using cerebrospinal fluid biomarkers according to the A(myloid-ß)/T(au)/N(eurodegeneration) classification. CRM was calculated utilizing residuals obtained from a multilinear regression model predicting cognition from markers of disease burden. Using an independent component analysis in resting-state fMRI data, we measured INC of resting-state networks, i.e., default mode network (DMN), frontoparietal network (FPN), salience network (SAL), and dorsal attention network. The associations of INC with a composite memory score and CRM and the associations of CRM with the seed-to-voxel functional connectivity of memory-related were tested in general linear models. RESULTS: CRM was positively associated with INC in the DMN in the entire cohort. The A+T+N+ group revealed an anti-correlation between the SAL and the DMN. Furthermore, CRM was positively associated with anti-correlation between memory-related regions in FPN and DMN in ADN and A+T/N+. CONCLUSION: Our results provide evidence that INC is associated with CRM in ADN defined as participants with amyloid pathology with or without cognitive symptoms, suggesting that the neural correlates of CR are mirrored in network FC in resting-state.


Asunto(s)
Enfermedad de Alzheimer , Reserva Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Cognición , Vías Nerviosas , Red Nerviosa , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen
4.
Neurobiol Aging ; 122: 33-44, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36476760

RESUMEN

Alzheimer's disease (AD) is associated with alterations in functional connectivity (FC) of the brain. The FC underpinnings of CR, that is, lifelong experiences, are largely unknown. Resting-state FC and structural MRI were performed in 76 CSF amyloid-ß (Aß) negative healthy controls and 152 Aß positive individuals as an AD spectrum cohort (ADS; 55 with subjective cognitive decline, SCD; 52 with mild cognitive impairment; 45 with AD dementia). Following a region-of-interest (ROI) FC analysis, intrinsic network connectivity within the default-mode network (INC-DMN) and anti-correlation in INC between the DMN and dorsal attention network (DMN:DAN) were obtained as composite scores. CR was estimated by education and Lifetime Experiences Questionnaire (LEQ). The association between INC-DMN and MEM was attenuated by higher LEQ scores in the entire ADS group, particularly in SCD. In ROI analyses, higher LEQ scores were associated with higher FC within the DMN in ADS group. INC-DMN remains relatively intact despite memory decline in individuals with higher lifetime activity estimates, supporting a role for functional networks in maintaining cognitive function in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Reserva Cognitiva , Humanos , Mapeo Encefálico , Cognición , Encéfalo/diagnóstico por imagen , Péptidos beta-Amiloides , Imagen por Resonancia Magnética
5.
Ann Neurol ; 92(5): 768-781, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053756

RESUMEN

OBJECTIVE: Alzheimer disease (AD) is characterized by amyloid ß (Aß) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. Aß and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns. METHODS: We included 32 Aß-positive early AD subjects (18 women, 14 men) and 18 Aß-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [18 F]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity. RESULTS: We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner. INTERPRETATION: Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 2022;92:768-781.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Humanos , Femenino , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Proteínas tau/metabolismo , Ligandos , Estudios Prospectivos , Tomografía de Emisión de Positrones/métodos , Placa Amiloide/metabolismo , Encéfalo/patología , Receptores de GABA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...