Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 852: 158358, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36049686

RESUMEN

Conventional arable cropping with annual crops established by ploughing and harrowing degrades larger soil aggregates that contribute to storing soil organic carbon (SOC). The urgent need to increase SOC content of arable soils to improve their functioning and sequester atmospheric CO2 has motivated studies into the effects of reintroducing leys into long-term conventional arable fields. However, effects of short-term leys on total SOC accumulation have been equivocal. As soil aggregation may be important for carbon storage, we investigated the effects of arable-to-ley conversion on cambisol soil after three years of ley, on concentrations and stocks of SOC, nitrogen and their distributions in different sized water-stable aggregates. These values were benchmarked against soil from beneath hedgerow margins. SOC stocks (0-7 cm depth) rose from 20.3 to 22.6 Mg ha-1 in the arable-to-ley conversion, compared to 30 Mg ha-1 in hedgerows, but this 2.3 Mg ha-1 difference (or 0.77 Mg C ha-1 yr-1) was not significant). However, the proportion of large macroaggregates (> 2000 µm) increased 5.4-fold in the arable-to-ley conversion, recovering to similar abundance as hedgerow soils, driving near parallel increases in SOC and nitrogen within large macroaggregates (5.1 and 5.7-fold respectively). The total SOC (0-7 cm depth) stored in large macroaggregates increased from 2.0 to 9.6 Mg ha-1 in the arable-to-ley conversion, which no longer differed significantly from the 12.1 Mg ha-1 under hedgerows. The carbon therefore accumulated three times faster, at 2.53 Mg C ha-1 yr-1, in the large macroaggregates compared to the bulk soil. These findings highlight the value of monitoring large macroaggregate-bound SOC as a key early indicator of shifts in soil quality in response to change in field management, and the benefits of leys in soil aggregation, carbon accumulation, and soil functioning, providing justification for fiscal incentives that encourage wider use of leys in arable rotations.


Asunto(s)
Suelo , Trifolium , Carbono , Nitrógeno , Secuestro de Carbono , Poaceae , Medicago , Dióxido de Carbono , Agricultura , Agua
2.
Mol Plant ; 13(10): 1455-1469, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32717347

RESUMEN

External and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA). However, the immediate signaling components after BABA perception by IBI1, as well as the regulatory role of ABA therein, remain unknown. Here, we have studied the early signaling events controlling IBI1-dependent BABA-induced resistance (BABA-IR), using untargeted transcriptome and protein interaction analyses. Transcriptome analysis revealed that IBI1-dependent expression of BABA-IR against the biotrophic oomycete Hyaloperonospora arabidopsidis is associated with suppression of ABA-inducible abiotic stress genes. Protein interaction studies identified the VOZ1 and VOZ2 transcription factors (TFs) as IBI1-interacting partners, which are transcriptionally induced by ABA but suppress pathogen-induced expression of ABA-dependent genes. Furthermore, we show that VOZ TFs require nuclear localization for their contribution to BABA-IR by mediating augmented expression of callose-associated defense. Collectively, our study indicates that the IBI1-VOZ signaling module channels pathogen-induced ABA signaling toward cell wall defense while simultaneously suppressing abiotic stress-responsive genes.


Asunto(s)
Ácido Abscísico/metabolismo , Aminobutiratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Filogenia
3.
Sci Total Environ ; 713: 136491, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31962242

RESUMEN

Effects of earthworms on soil physico-hydraulic and chemical properties, herbage production and wheat growth in long-term arable soils following conversion to ley were investigated. Seven intact soil monoliths were collected from each of four arable fields. One monolith per field served as a control. The other six were defaunated by deep-freezing; three were left defaunated (DeF) and three (DeF+E) were repopulated with earthworms to mimic pasture field density and diversity. The monoliths were planted with a grass-clover ley and inserted into pre-established ley strips in their original fields for 12 months. Hydraulic conductivity measurements at -0.5 cm tension (K0.5) were taken five times over the year. K0.5 significantly increased in summer 2017 and spring 2018 and decreased in winter 2017-18. K0.5 was significantly greater (47%) for DeF+E than DeF monoliths. By the end of the experiment, pores >1 mm diameter made a significantly greater contribution to water flow in DeF+E (98%) than DeF (95%) monoliths. After only a year of arable to ley conversion, soil bulk density significantly decreased (by 6%), and organic matter (OM) content increased (by 29%) in the DeF treatments relative to the arable soil. Earthworms improved soil quality further. Compared to DeF monoliths, DeF+E monoliths had significantly increased water-holding capacity (by 9%), plant-available water (by 21%), OM content (by 9%), grass-clover shoot dry biomass (by 58%), water-stable aggregates >250 µm (by 15%) and total N (by 3.5%). In a wheat bioassay following the field experiment, significantly more biomass (20%) was produced on DeF+E than DeF monolith soil, likely due to the changed soil physico-hydraulic properties. Our results show that earthworms play a significant role in improvements to soil quality and functions brought about by arable to ley conversion, and that augmenting depleted earthworm populations can help the restoration of soil qualities adversely impacted by intensive agriculture.


Asunto(s)
Oligoquetos , Suelo , Agricultura , Animales , Poaceae , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA