Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 709, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112934

RESUMEN

Diversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


Asunto(s)
Ratas/fisiología , Corteza Somatosensorial/fisiología , Tacto , Vibrisas/fisiología , Potenciales de Acción , Animales , Masculino , Neuronas/fisiología , Ratas Wistar
2.
Neuron ; 105(1): 122-137.e8, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31784285

RESUMEN

Pyramidal tract neurons (PTs) represent the major output cell type of the mammalian neocortex. Here, we report the origins of the PTs' ability to respond to a broad range of stimuli with onset latencies that rival or even precede those of their intracortical input neurons. We find that neurons with extensive horizontally projecting axons cluster around the deep-layer terminal fields of primary thalamocortical axons. The strategic location of these corticocortical neurons results in high convergence of thalamocortical inputs, which drive reliable sensory-evoked responses that precede those in other excitatory cell types. The resultant fast and horizontal stream of excitation provides PTs throughout the cortical area with input that acts to amplify additional inputs from thalamocortical and other intracortical populations. The fast onsets and broadly tuned characteristics of PT responses hence reflect a gating mechanism in the deep layers, which assures that sensory-evoked input can be reliably transformed into cortical output.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Tálamo/fisiología , Animales , Potenciales Evocados/fisiología , Masculino , Modelos Neurológicos , Vías Nerviosas/fisiología , Ratas
3.
Neuroscience ; 368: 171-186, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958919

RESUMEN

The rodent facial nucleus (FN) comprises motoneurons (MNs) that control the facial musculature. In the lateral part of the FN, populations of vibrissal motoneurons (vMNs) innervate two groups of muscles that generate movements of the whiskers. Vibrissal MNs thus represent the terminal point of the neuronal networks that generate rhythmic whisking during exploratory behaviors and that modify whisker movements based on sensory-motor feedback during tactile-based perception. Here, we combined retrograde tracer injections into whisker-specific muscles, with large-scale immunohistochemistry and digital reconstructions to generate an average model of the rat FN. The model incorporates measurements of the FN geometry, its cellular organization and a whisker row-specific map formed by vMNs. Furthermore, the model provides a digital 3D reference frame that allows registering structural data - obtained across scales and animals - into a common coordinate system with a precision of ∼60 µm. We illustrate the registration method by injecting replication competent rabies virus into the muscle of a single whisker. Retrograde transport of the virus to vMNs enabled reconstruction of their dendrites. Subsequent trans-synaptic transport enabled mapping the presynaptic neurons of the reconstructed vMNs. Registration of these data to the FN reference frame provides a first account of the morphological and synaptic input variability within a population of vMNs that innervate the same muscle.


Asunto(s)
Músculos Faciales/fisiología , Núcleo Motor del Nervio Facial/anatomía & histología , Núcleo Motor del Nervio Facial/fisiología , Modelos Neurológicos , Neuronas Motoras/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Vibrisas/fisiología , Animales , Masculino , Ratas , Ratas Wistar
4.
Nat Commun ; 8(1): 870, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021587

RESUMEN

Pyramidal tract neurons (PTs) represent the major output cell type of the neocortex. To investigate principles of how the results of cortical processing are broadcasted to different downstream targets thus requires experimental approaches, which provide access to the in vivo electrophysiology of PTs, whose subcortical target regions are identified. On the example of rat barrel cortex (vS1), we illustrate that retrograde tracer injections into multiple subcortical structures allow identifying the long-range axonal targets of individual in vivo recorded PTs. Here we report that soma depth and dendritic path lengths within each cortical layer of vS1, as well as spiking patterns during both periods of ongoing activity and during sensory stimulation, reflect the respective subcortical target regions of PTs. We show that these cellular properties result in a structure-function parameter space that allows predicting a PT's subcortical target region, without the need to inject multiple retrograde tracers.The major output cell type of the neocortex - pyramidal tract neurons (PTs) - send axonal projections to various subcortical areas. Here the authors combined in vivo recordings, retrograde tracings, and reconstructions of PTs in rat somatosensory cortex to show that PT structure and activity can predict specific subcortical targets.


Asunto(s)
Tractos Piramidales/anatomía & histología , Tractos Piramidales/fisiología , Potenciales de Acción , Animales , Dendritas , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Ratas Wistar
5.
Brain Struct Funct ; 220(3): 1369-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24723034

RESUMEN

Glycoprotein-deleted rabies virus (RABV ∆G) is a powerful tool for the analysis of neural circuits. Here, we demonstrate the utility of an anterograde RABV ∆G variant for novel neuroanatomical approaches involving either bulk or sparse neuronal populations. This technology exploits the unique features of RABV ∆G vectors, namely autonomous, rapid high-level expression of transgenes, and limited cytotoxicity. Our vector permits the unambiguous long-range and fine-scale tracing of the entire axonal arbor of individual neurons throughout the brain. Notably, this level of labeling can be achieved following infection with a single viral particle. The vector is effective over a range of ages (>14 months) aiding the studies of neurodegenerative disorders or aging, and infects numerous cell types in all brain regions tested. Lastly, it can also be readily combined with retrograde RABV ∆G variants. Together with other modern technologies, this tool provides new possibilities for the investigation of the anatomy and physiology of neural circuits.


Asunto(s)
Encéfalo/citología , Vectores Genéticos/metabolismo , Imagenología Tridimensional/métodos , Neuronas/citología , Virus de la Rabia/genética , Coloración y Etiquetado/métodos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Transporte Axonal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Glicoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Virus de la Rabia/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(47): 19113-8, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24101458

RESUMEN

The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related "barrel" columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic "barreloid" varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles.


Asunto(s)
Modelos Neurológicos , Corteza Somatosensorial/citología , Vibrisas/inervación , Vías Aferentes/citología , Animales , Recuento de Células , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...