Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(9): 3310-5, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401557

RESUMEN

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.


Asunto(s)
Aire , Técnicas Analíticas Microfluídicas/métodos , Temperatura , Disparidad de Par Base , ADN de Cadena Simple/química , Electricidad , Transferencia Resonante de Energía de Fluorescencia , Desnaturalización de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Temperatura de Transición , Volatilización
2.
Lab Chip ; 13(3): 336-9, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23179093

RESUMEN

Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.


Asunto(s)
Electroporación/instrumentación , Nanocables , Silicio , Electroporación/métodos , Diseño de Equipo , Células HT29 , Humanos , Dispositivos Laboratorio en un Chip , Nanotecnología/métodos , Nanotubos de Carbono , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...