Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36919946

RESUMEN

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Asunto(s)
COVID-19 , Adulto Joven , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudios Prospectivos , Metilación de ADN/genética , Procesamiento Proteico-Postraduccional
2.
Cell Syst ; 13(11): 924-931.e4, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36323307

RESUMEN

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
COVID-19 , Inmunidad Innata , Caracteres Sexuales , Femenino , Humanos , Masculino , Adulto Joven , COVID-19/inmunología , Interferones , Proteómica , SARS-CoV-2
3.
J Clin Invest ; 122(5): 1734-41, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22484812

RESUMEN

Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.


Asunto(s)
Adenocarcinoma/sangre , Biomarcadores de Tumor/sangre , Ciclofilinas/sangre , Páncreas/patología , Neoplasias Pancreáticas/sangre , Técnica SELEX de Producción de Aptámeros/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Animales , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Ciclofilinas/aislamiento & purificación , Ciclofilinas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Páncreas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Unión Proteica , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...