Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 52016 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-26987018

RESUMEN

The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , ADN/metabolismo , Endonucleasas/antagonistas & inhibidores , Nucleosomas/metabolismo , Proteína 9 Asociada a CRISPR , Línea Celular , Marcación de Gen/métodos , Humanos
2.
Science ; 350(6262): 823-6, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26564855

RESUMEN

The RNA-guided CRISPR-associated protein Cas9 is used for genome editing, transcriptional modulation, and live-cell imaging. Cas9-guide RNA complexes recognize and cleave double-stranded DNA sequences on the basis of 20-nucleotide RNA-DNA complementarity, but the mechanism of target searching in mammalian cells is unknown. Here, we use single-particle tracking to visualize diffusion and chromatin binding of Cas9 in living cells. We show that three-dimensional diffusion dominates Cas9 searching in vivo, and off-target binding events are, on average, short-lived (<1 second). Searching is dependent on the local chromatin environment, with less sampling and slower movement within heterochromatin. These results reveal how the bacterial Cas9 protein interrogates mammalian genomes and navigates eukaryotic chromatin structure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas , Cromatina/metabolismo , División del ADN , Endonucleasas/metabolismo , Ingeniería Genética , Células 3T3 , Animales , Proteínas Bacterianas/química , Proteína 9 Asociada a CRISPR , Cromatina/química , Cromatina/ultraestructura , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/química , Genoma , Ratones , Análisis de la Célula Individual
3.
Mol Cell ; 51(4): 480-92, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973376

RESUMEN

To bridge the gap between in vivo and in vitro molecular mechanisms, we dissected the transcriptional control of the endogenous histone gene cluster (His-C) by single-cell imaging. A combination of quantitative immunofluorescence, RNA FISH, and FRAP measurements revealed atypical promoter recognition complexes and differential transcription kinetics directing histone H1 versus core histone gene expression. While H1 is transcribed throughout S phase, core histones are only transcribed in a short pulse during early S phase. Surprisingly, no TFIIB or TFIID was detectable or functionally required at the initiation complexes of these promoters. Instead, a highly stable, preloaded TBP/TFIIA "pioneer" complex primes the rapid initiation of His-C transcription during early S phase. These results provide mechanistic insights for the role of gene-specific core promoter factors and implications for cell cycle-regulated gene expression.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Histonas/genética , Familia de Multigenes , Fase S/fisiología , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Procesamiento de Imagen Asistido por Computador , Cinética , Regiones Promotoras Genéticas/genética , TATA Box/genética , Proteína de Unión a TATA-Box/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factor de Transcripción TFIIA/genética , Factor de Transcripción TFIIA/metabolismo , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética
4.
Annu Rev Biophys ; 38: 173-96, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19416065

RESUMEN

The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Fluorescente/métodos , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología
5.
Proc Natl Acad Sci U S A ; 104(41): 16062-7, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17901206

RESUMEN

The transcription initiation and elongation steps of protein-coding genes usually rely on unrelated protein complexes. However, the TFIIS elongation factor is implicated in both processes. We found that, in the absence of the Med31 Mediator subunit, yeast cells required the TFIIS polymerase II (Pol II)-binding domain but not its RNA cleavage stimulatory activity that is associated with its elongation function. We also found that the TFIIS Pol II-interacting domain was needed for the full recruitment of Pol II to several promoters in the absence of Med31. This work demonstrated that, in addition to its thoroughly characterized role in transcription elongation, TFIIS is implicated through its Pol II-binding domain in the formation or stabilization of the transcription initiation complex in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Cisteína Sintasa , Genes Fúngicos , Prueba de Complementación Genética , Complejo Mediador , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia , Transcripción Genética , Factores de Elongación Transcripcional/química
6.
Nucleic Acids Res ; 32(18): 5379-91, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15477388

RESUMEN

Mediator is a large, modular protein complex remotely conserved from yeast to man that conveys regulatory signals from DNA-binding transcription factors to RNA polymerase II. In Saccharomyces cerevisiae, Mediator is thought to be composed of 24 subunits organized in four sub-complexes, termed the head, middle, tail and Cdk8 (Srb8-11) modules. In this work, we have used screening and pair-wise two-hybrid approaches to investigate protein-protein contacts between budding yeast Mediator subunits. The derived interaction map includes the delineation of numerous interaction domains between Mediator subunits, frequently corresponding to segments that have been conserved in evolution, as well as novel connections between the Cdk8 (Srb8-11) and head modules, the head and middle modules, and the middle and tail modules. The two-hybrid analysis, together with co-immunoprecipitation studies and gel filtration experiments revealed that Med31 (Soh1) is associated with the yeast Mediator that therefore comprises 25 subunits. Finally, analysis of the protein interaction network within the Drosophila Mediator middle module indicated that the structural organization of the Mediator complex is conserved from yeast to metazoans. The resulting interaction map provides a framework for delineating Mediator structure-function and investigating how Mediator function is regulated.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Biblioteca Genómica , Sustancias Macromoleculares , Complejo Mediador , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Técnicas del Sistema de Dos Híbridos
7.
J Biol Chem ; 277(38): 35712-9, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12107183

RESUMEN

In human cells, PinX1 protein has recently been shown to regulate telomere length by repressing the telomerase. In this work, we show that the putative yeast homolog of PinX1, encoded by the YGR280c open reading frame (ORF), is a new component of the ribosomal RNA processing machinery. The protein has a KK(E/D) C-terminal domain typical of nucleolar proteins and bears a putative RNA interacting domain widespread in eukaryotes called the G-patch. The protein was hence renamed Gno1p (G-patch nucleolar protein). GNO1 deletion results in a large growth defect due to the inhibition of the pre-ribosomal RNA processing first cleavage steps at sites A(0), A(1), and A(2). Furthermore, Gno1p is involved in the final 3'-end trimming of U18 and U24 small nucleolar RNAs. A mutational analysis showed that the G-patch of Gno1p is essential for both functions, whereas the KK(E/D) repeats are only required for U18 small nucleolar RNA maturation. We found that PinX1 complemented the gno1-Delta mutation, suggesting that it has a dual function in telomere length regulation and ribosomal RNA maturation in agreement with its telomeric and nucleolar localization in human cells. Conversely, we found that Gno1p does not exhibit the in vivo telomerase inhibitor activity of PinX1.


Asunto(s)
ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/metabolismo , Telómero , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Ciclo Celular , Clonación Molecular , Cartilla de ADN , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA