Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water (Basel) ; 15(2): 1-26, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38269364

RESUMEN

Wastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na+, Ca2+, and Cl-) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca2+, Mg2+, Na+, SO42- and HCO3-)-both sources being extensive in the Central Appalachians of the USA. The recipes were dosed at environmentally relevant nominal concentrations of total dissolved solids (TDS) spanning 100 to 2000 mg/L for 43 d under continuous flow-through conditions. The colonizing native algal periphyton and benthic invertebrates comprising the mesocosm ecology were assessed with response sensitivity distributions (RSDs) and hazard concentrations (HCs) at the taxa, community (as assemblages), and system (as primary and secondary production) levels. Single-species toxicity tests were run with the same recipes. Dosing the MTM recipe resulted in a significant loss of secondary production and invertebrate taxa assemblages that diverged from the control at all concentrations tested. Comparatively, intermediate doses of the DWB recipe had little consequence or increased secondary production (for emergence only) and had assemblages less different from the control. Only the highest dose of the DWB recipe had a negative impact on certain ecologies. The MTM recipe appeared more toxic, but overall, for both types of resource extraction wastewaters, the mesocosm responses suggested significant changes in stream ecology would not be expected for specific conductivity below 300 µS/cm, a published aquatic life benchmark suggested for the region.

2.
J Earth Environ Sci ; 25: 704-726, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31750421

RESUMEN

Retention ponds constructed within urban watershed areas of high density populations are common as a result of green infrastructure applications. Several urban ponds in the Northern Kentucky, USA area were monitored for algal community (algae and cyanobacteria) from October 2012 to September 2013. Many of the harmful algal blooms observed during this study were composed primarily of the cyanobacteria genus, Microcystis. No correlations were observed between basic water quality parameters (dissolved oxygen, pH, conductivity, temperature, nitrate and soluble reactive phosphate) and the presence of cyanobacteria and/or microcystin cyanobacterial toxin levels. Furthermore, levels of microcystin toxins did not always coincide with high Microcystis cell counts. Harmful algal blooms in small urban ponds are common which pose risk to human and ecological health due to proximity of dense human population including pets and wild animals. Because harmful algal blooms were detected throughout the year in this study, adaptation of universal guidelines for the design, construction and maintenance of urban ponds may be necessary to protect watershed aquatic ecosystems, and lower health risks from exposure to such harmful blooms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...