Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 350: 154-161, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29475167

RESUMEN

Sulfate reduction and its associated contaminant immobilization in marsh soils supporting a phosphogypsum stack was examined by pore-water and solid analysis, selective extractions, microscopy and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The negative impact of this stack on estuarine environments is a concerning problem. In the weathering profile, total concentrations of most pollutants increase with depth; instead, dissolved contents in pore-waters increase to middle of the saturated zone but then decrease drastically down to reach the marsh due to sulfide precipitation. Excess of acid-volatile sulfide plus pyritic sulfur over metals bound to the oxidizable fraction indicates that sulfide precipitation is the main mechanism responsible for metal removal in the marsh. Thus, abundant pyrite occurred as framboidal grains, in addition to other minor sulfides of As, Zn and Cu as isolated particles. Moreover, high contents of elemental sulfur were found, which suggest partial sulfide oxidation, but marsh may have capacity to buffer potential release of contaminants. The importance of sulfur species was quantitatively confirmed by XANES, which also supports the accuracy of selective extraction schemes. Accordingly, managing pore-water quality through organic carbon-rich amendments over phosphogypsum stacks could lead to a decrease in contaminant loading of leakages resulting from weathering.

2.
RSC Adv ; 8(40): 22411-22421, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35539741

RESUMEN

We report the colloidal synthesis of hybrid dumbbell-like nanocrystals (NCs) which feature a plasmonic metal domain (M) attached to a morphologically-tunable magnetic oxide domain (MOx). We highlight how the modulation of the amount of oleic acid (OlAc) in the synthesis mixture influences the final composition of the M domain, the morphology of the MOx domain and, consequently, the magnetic properties of the hetero-structures. In the presence of high amounts of OlAc, a crystalline, magnetite MOx is mainly formed, coupled with a partial dealloying between Au and Cu in the M domain. Decreasing the amount of OlAc preserved the AuCu alloy and resulted in the formation of core-shell structures in the MOx. Here, a disordered, poorly crystalline, glass-like maghemite shell was coupled with a highly disordered iron rich core. An investigation into the magnetic properties revealed that the disordered phase was likely responsible for the observed exchange bias, rather than the interfacial stress between the M and MOx.

3.
Nanotechnology ; 28(5): 055704, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28029102

RESUMEN

ZnO nanoparticles capped with thiol molecules display room temperature ferromagnetism which has been associated with the structural details of the interface formed between the organic molecule and the ZnO core. Although the local order around sulfur atoms at the ZnS/ZnO interface has been related to the occurrence of the ferromagnetic like behavior, no direct structural determination has been obtained yet. We report here a detailed x-ray absorption spectroscopy study performed at the sulfur K-edge to determine the local structure around the sulfur atoms in these systems and how it is modified by varying the length of the organic molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...