Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(4): 106307, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968077

RESUMEN

Post-transcriptional regulation by RNA-binding proteins (RBPs) is a major mode of controlling gene expression under stress conditions. The RBP HuR regulates the translation/turnover of multiple mRNAs in stress responses. HuR is degraded in response to heat stress consequent to ubiquitination of the K182 amino acid residue. We have identified TRIM21 as the E3-ubiquitin ligase causing HuR polyubiquitination at K182 and proteasomal degradation under heat shock. The S100 and E101 residues are required for binding of TRIM21 to HuR. Heat shock-induced phosphorylation of S100 is necessary for TRIM21 interaction with HuR and subsequent degradation. We identified AKT1 as the kinase which phosphorylates S100, allowing the recognition of HuR by TRIM21. Sequential phosphorylation by AKT1 and ubiquitination by TRIM21 therefore determine a "phosphodegron" in HuR that is required for regulating the cellular level of HuR under heat shock, thereby enabling a crucial adaptive mechanism allowing cell survival in response to heat stress.

2.
Glia ; 71(3): 485-508, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36380708

RESUMEN

A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1ß, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Enfermedades Neurodegenerativas , Humanos , ARN/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/metabolismo , Mediadores de Inflamación/metabolismo
3.
Aging (Albany NY) ; 14(24): 9832-9859, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585921

RESUMEN

Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Superóxido Dismutasa-1/genética , Transcriptoma , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad
4.
Neurotherapeutics ; 19(5): 1649-1661, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35864415

RESUMEN

Microglial activation with the production of pro-inflammatory mediators such as IL-6, TNF-α, and IL-1ß, is a major driver of neuropathic pain (NP) following peripheral nerve injury. We have previously shown that the RNA binding protein, HuR, is a positive node of regulation for many of these inflammatory mediators in glia and that its chemical inhibition or genetic deletion attenuates their production. In this report, we show that systemic administration of SRI-42127, a novel small molecule HuR inhibitor, attenuates mechanical allodynia, a hallmark of NP, in the early and chronic phases after spared nerve injury in male and female mice. Flow cytometry of lumbar spinal cords in SRI-42127-treated mice shows a reduction in infiltrating macrophages and a concomitant decrease in microglial populations expressing IL-6, TNF-α, IL-1ß, and CCL2. Immunohistochemistry, ELISA, and qPCR of lumbar spinal cord tissue indicate suppression of these cytokines and other inflammatory mediators. ELISA of plasma samples in the acute phase also shows attenuation of inflammatory responses. In summary, inhibition of HuR by SRI-42127 leads to the suppression of neuroinflammatory responses and allodynia after nerve injury and represents a promising new direction in the treatment of NP.


Asunto(s)
Neuralgia , Traumatismos del Sistema Nervioso , Ratones , Masculino , Femenino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , ARN/metabolismo , Interleucina-6/metabolismo , Modelos Animales de Enfermedad , Neuralgia/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Microglía/metabolismo , Médula Espinal/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo
5.
Glia ; 70(1): 155-172, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533864

RESUMEN

Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1ß, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-ß1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.


Asunto(s)
Proteína 1 Similar a ELAV , Lipopolisacáridos , Regiones no Traducidas 3' , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Cinética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias
6.
Adv Drug Deliv Rev ; 181: 114082, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34923029

RESUMEN

Glioblastoma (GBM) is a malignant and aggressive brain tumor with a median survival of ∼15 months. Resistance to treatment arises from the extensive cellular and molecular heterogeneity in the three major components: glioma tumor cells, glioma stem cells, and tumor-associated microglia and macrophages. Within this triad, there is a complex network of intrinsic and secreted factors that promote classic hallmarks of cancer, including angiogenesis, resistance to cell death, proliferation, and immune evasion. A regulatory node connecting these diverse pathways is at the posttranscriptional level as mRNAs encoding many of the key drivers contain adenine- and uridine rich elements (ARE) in the 3' untranslated region. Human antigen R (HuR) binds to ARE-bearing mRNAs and is a major positive regulator at this level. This review focuses on basic concepts of ARE-mediated RNA regulation and how targeting HuR with small molecule inhibitors represents a plausible strategy for a multi-pronged therapeutic attack on GBM.


Asunto(s)
Adenina/metabolismo , Neoplasias Encefálicas/patología , Proteína 1 Similar a ELAV/metabolismo , Glioblastoma/patología , Uridina/metabolismo , Humanos , Neovascularización Patológica , Interferencia de ARN/fisiología , ARN Mensajero/metabolismo
7.
J Immunol ; 207(5): 1250-1264, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34362832

RESUMEN

Quorum-sensing mechanisms that sense the density of immune cells at the site of inflammation to initiate inflammation resolution have recently been demonstrated as a major determinant of the inflammatory response. We observed a density-dependent increase in expression of the inflammatory tumor suppressor protein programmed cell death 4 (PDCD4) in mouse macrophage cells. Conditioned medium from high-density cells upregulated PDCD4 expression, revealing the presence of a secreted factor(s) acting as a macrophage quorum sensor. Secreted gelsolin (GSN) was identified as the quorum-sensing autoinducer. Alteration of GSN levels changed PDCD4 expression and the density-dependent phenotype of cells. LPS induced the expression of microRNA miR-21, which downregulated both GSN and PDCD4 expression, and reversed the high-density phenotype. The high-density phenotype was correlated with an anti-inflammatory gene expression program, which was counteracted by inflammatory stimulus. Together, our observations establish the miR-21-GSN-PDCD4 regulatory network as a crucial mediator of a macrophage quorum-sensing mechanism for the control of inflammatory responses.


Asunto(s)
Gelsolina , MicroARNs , Animales , Apoptosis , Gelsolina/genética , Gelsolina/metabolismo , Macrófagos/metabolismo , Ratones , MicroARNs/genética , Fenotipo , Percepción de Quorum
8.
Sci Rep ; 10(1): 11753, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678213

RESUMEN

The E3 ubiquitin ligase TRIM21 plays a crucial role as a negative regulator of innate immune responses. Recent evidence has also indicated the involvement of TRIM21 in the genotoxic stress response and suppressing tumorigenesis. Our previous work has demonstrated a new function of TRIM21 in inhibiting p53 protein synthesis by degrading the RNA-binding protein HuR in response to UV radiation. This suggested a pro-oncogenic role of TRIM21. In this study, we have shown that TRIM21 enhances the proliferation of MCF7 breast carcinoma cells and counteracts the decrease in cell proliferation and colony formation caused by UV-induced DNA damage. Further, this pro-oncogenic role of TRIM21 in response to DNA damage is mediated by its degradation of HuR. Conversely, we found that HuR binds to a U-rich element in the 3'UTR of TRIM21 mRNA and activates its translation, thereby constituting a negative feedback loop. We found that dihydrotanshinone-I (DHTS-I), a plant-derived product which prevents HuR binding to specific RNAs, prevented HuR-mediated upregulation of TRIM21, while increasing the HuR-mediated upregulation of p53. Together, these findings demonstrate a negative feedback regulation between TRIM21 and HuR, which may play an important role in regulating the level of p53 in the genotoxic stress response.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Ribonucleoproteínas/genética , Rayos Ultravioleta , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Neoplasias de la Mama , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Modelos Biológicos , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Ribonucleoproteínas/metabolismo
9.
iScience ; 15: 342-359, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31103853

RESUMEN

Expression of tumor suppressor p53 is regulated at multiple levels, disruption of which often leads to cancer. We have adopted an approach combining computational systems modeling with experimental validation to elucidate the translation regulatory network that controls p53 expression post DNA damage. The RNA-binding protein HuR activates p53 mRNA translation in response to UVC-induced DNA damage in breast carcinoma cells. p53 and HuR levels show pulsatile change post UV irradiation. The computed model fitted with the observed pulse of p53 and HuR only when hypothetical regulators of synthesis and degradation of HuR were incorporated. miR-125b, a UV-responsive microRNA, was found to represses the translation of HuR mRNA. Furthermore, UV irradiation triggered proteasomal degradation of HuR mediated by an E3-ubiquitin ligase tripartite motif-containing 21 (TRIM21). The integrated action of miR-125b and TRIM21 constitutes an intricate control system that regulates pulsatile expression of HuR and p53 and determines cell viability in response to DNA damage.

10.
Anal Chem ; 89(19): 10625-10636, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28851222

RESUMEN

A pair of pyrene- and anthracene-based turn-on fluorescent probes (1 and 2, respectively) reported here can be easily synthesized in a single-step process and also exhibit outstanding sensing behavior toward hydrazine over various competing nucleophilic species and environmentally relevant ions. The probes display dramatic enhancements in the emission intensity with as high as 83- and 173-fold increases in the presence of hydrazine. Nitrogenous bases, thiols, and lanthanides do not interfere in the fluorometric detection. These probes enable the detection of hydrazine with the naked eye well below sub-ppm concentrations (ca. 30 ppb) with analytical detection limits of 5.4 ppb for 1 and 7.7 ppb for 2, which are far exceeded by the accepted lower limit for hydrazine (10 ppb) set by the US EPA. Simple paper strips based on these probes could be used for the detection of hydrazine even in the gas phase. Both of the probes could selectively detect hydrazine even in pond water samples efficiently. The probes were successfully applied to visualize, for the first time, accumulation of hydrazine in live fruit-fly larvae using epifluorescence microscopy. The novel and interesting detection mechanism, proposed on the basis of spectroscopic evidence and single crystal XRD results, indicates that the detection pathway proceeds via the initial step of a five-membered ring formation upon attack of the hydrazine, followed by a dehydration step for gaining aromaticity.


Asunto(s)
Colorantes Fluorescentes/química , Hidrazinas/análisis , Microscopía Fluorescente , Animales , Drosophila/química , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Humanos , Hidrazinas/metabolismo , Larva/química , Larva/metabolismo , Límite de Detección , Células MCF-7 , Teoría Cuántica
11.
ISRN Mol Biol ; 2012: 596289, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-27335666

RESUMEN

Regulation of microtubule dynamics depends on stochastic balance between polymerization and severing process which lead to differential spatiotemporal abundance and distribution of microtubules during cell development, differentiation, and morphogenesis. Microtubule severing by a conserved AAA family protein Katanin has emerged as an important microtubule architecture modulating process in cellular functions like division, migration, shaping and so on. Regulated by several factors, Katanin manifests connective crosstalks in network motifs in regulation of anisotropic severing pattern of microtubule protofilaments in cell type and stage dependent way. Mechanisms of structural disintegration of microtubules by Katanin involve heterogeneous mechanochemical processes and sensitivity of microtubules to Katanin plays significant roles in mitosis/meiosis, neurogenesis, cilia/flagella formation, cell wall development and so on. Deregulated and uncoordinated expression of Katanin has been shown to have implications in pathophysiological conditions. In this paper, we highlight mechanistic models and regulations of microtubule severing by Katanin in context of structure and various functions of Katanin in different organisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...