Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
1.
Rep Prog Phys ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821047

RESUMEN

This is a review article about neutrino mass and mixing and flavour model building strategies based on modular symmetry. After an introduction to neutrino mass and lepton mixing, we then turn to the main subject of this review, namely a pedagogical introduction to modular symmetry as a candidate for family symmetry, from the bottom-up point of view. After an informal introduction to modular symmetry, we introduce the modular group, and discuss its fixed points and residual symmetry, assuming supersymmetry throughout. We then introduce finite modular groups of level N and modular forms with integer or rational modular weights, corresponding to simple geometric groups or their double or metaplectic covers, including the most general finite modular groups and vector-valued modular forms, with detailed results for N=2,3,4,5. The interplay between modular symmetry and generalized CP symmetry is discussed, deriving CP transformations on matter multiplets and modular forms, highlighting the CP fixed points and their implications. In general, compactification of extra dimensions generally leads to a number of moduli, and modular invariance with factorizable and non-factorizable multiple moduli based on symplectic modular invariance and automorphic forms is reviewed. Modular strategies for understanding fermion mass hierarchies are discussed, including the weighton mechanism, small deviations from fixed points, and texture zeroes. Then examples of modular models are discussed based on single modulus A4 models, a minimal S'4 model of leptons (and quarks), and a multiple moduli model based on three S4 groups capable of reproducing the Littlest Seesaw model. We then extend the discussion to include Grand Unified Theories (GUTs) based on modular (flipped) SU(5) and SO(10). Finally we discuss top-down approaches, including eclectic flavour symmetry and moduli stabilisation.

3.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500318

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Asunto(s)
Electroacupuntura , Enfermedad de Parkinson , Sirtuina 3 , Ratones , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Sirtuina 3/genética , Mitofagia/genética , Proteínas Quinasas/genética , Beclina-1 , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero
4.
Adv Sci (Weinh) ; 11(14): e2305979, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308189

RESUMEN

Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.


Asunto(s)
Interferón Tipo I , Neoplasias , Humanos , Manganeso , Peróxido de Hidrógeno , Transducción de Señal , Neoplasias/tratamiento farmacológico , Inmunidad , Microambiente Tumoral
5.
Cell Metab ; 36(3): 630-647.e8, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38309268

RESUMEN

Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Linfocitos T CD8-positivos , Diana Mecanicista del Complejo 1 de la Rapamicina , Colesterol , Inmunoterapia , Microambiente Tumoral
6.
J Chem Inf Model ; 64(1): 76-95, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38109487

RESUMEN

Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Pliegue de Proteína , Proyectos de Investigación
7.
World J Psychiatry ; 13(11): 937-948, 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38073894

RESUMEN

BACKGROUND: Schizophrenia is a psychiatric disorder characterized by chronic or recurrent symptoms. Lurasidone was licensed in China in 2019 for the treatment of adult schizophrenia in adults with a maximum dose of 80 mg/d. However, post-market surveillance (PMS) with an adequate sample size is required for further validation of the drug's safety profile and effectiveness. AIM: To conduct PMS in real-world clinical settings and evaluate the safety and effectiveness of lurasidone in the Chinese population. METHODS: A prospective, multicenter, open-label, 12-wk surveillance was conducted in mainland China. All patients with schizophrenia from 10 sites who had begun medication with lurasidone between September 2019 and August 2022 were eligible for enrollment. Safety assessments included adverse events (AEs), adverse drug reactions (ADRs), extrapyramidal symptoms (EPS), akathisia, use of EPS drugs, weight gain, and laboratory values as metabolic parameters and the QTc interval. The effectiveness was assessed using the brief psychiatric rating scale (BPRS) from baseline to the end of treatment. RESULTS: A total of 965 patients were enrolled in the full analysis set and 894 in the safety set in this interim analysis. The average daily dose was 61.7 ± 19.08 mg (mean ± SD) during the treatment. AEs and ADRs were experienced by 101 patients (11.3%) and 78 patients (8.7%), respectively, which were mostly mild. EPS occurred in 25 individuals with a 2.8% incidence, including akathisia in 20 individuals (2.2%). Moreover, 59 patients received drugs for treating EPS during the treatment, with an incidence of 6.6% which dropped to 5.4% at the end of the treatment. The average weight change was 0.20 ± 2.36 kg (P = 0.01687) with 0.8% of patients showing a weight gain of ≥ 7% at week 12 compared with that at the baseline. The mean values of metabolic parameters and the QTc interval at baseline and week 12 were within normal ranges. The mean changes in total BPRS scores were -8.9 ± 9.76 (n = 959), -13.5 ± 12.29 (n = 959), and -16.8 ± 13.97 (n = 959) after 2/4, 6/8, and 12 wk, respectively (P < 0.001 for each visit compared with the baseline) using the last-observation-carried-forward method. CONCLUSION: The interim analysis of the PMS of adult patients with schizophrenia demonstrate the safety and effectiveness of lurasidone in the Chinese population. No new safety or efficacy concerns were identified.

8.
Am J Transl Res ; 15(11): 6626-6631, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074820

RESUMEN

De novo glomerular injuries or relapse of nephropathy following COVID-19 vaccine has been reported. Here we present the first case of successful treatment of new-onset diabetes mellitus and biopsy-proven IgA nephropathy after COVID-19 vaccination. A 56-year-old man with no known medical history of renal dysfunction or diabetes mellitus developed both within 3 months after receiving a third dose of inactivated COVID-19 vaccine (Vero cells). His symptoms were characterized by brown urine, severe dry mouth, and excessive thirst. Randomly acquired blood glucose levels exceeded 33.3 mmol/L. A kidney biopsy showed IgA nephropathy. He was started on insulin for glycemic control. After glucocorticoid and cyclophosphamide treatment, oral tablets of repaglinide, combined with acarbose, controlled blood glucose and stabilized kidney function. This case is unique because the kidneys and pancreas were simultaneously affected by the vaccine. Successful treatment of the disease proved that cyclophosphamide combined with glucocorticoids were effective and that blood glucose was successfully controlled. This treatment option could be useful in similar cases in the future.

9.
Cell Death Dis ; 14(12): 804, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062068

RESUMEN

While ectonucleotidase CD39 is a cancer therapeutic target in clinical trials, its direct effect on T-cell differentiation in human non-small-cell lung cancer (NSCLC) remains unclear. Herein, we demonstrate that human NSCLC cells, including tumor cell lines and primary tumor cells from clinical patients, efficiently drive the metabolic adaption of human CD4+ T cells, instructing differentiation of regulatory T cells while inhibiting effector T cells. Of importance, NSCLC-induced T-cell mal-differentiation primarily depends on cancer CD39, as this can be fundamentally blocked by genetic depletion of CD39 in NSCLC. Mechanistically, NSCLC cells package CD39 into their exosomes and transfer such CD39-containing exosomes into interacting T cells, resulting in ATP insufficiency and AMPK hyperactivation. Such CD39-dependent NSCLC-T cell interaction holds well in patients-derived primary tumor cells and patient-derived organoids (PDOs). Accordingly, genetic depletion of CD39 alone or in combination with the anti-PD-1 immunotherapy efficiently rescues effector T cell differentiation, instigates anti-tumor T cell immunity, and inhibits tumor growth of PDOs. Together, targeting cancer CD39 can correct the mal-differentiation of CD4+ T cells in human NSCLC, providing in-depth insight into therapeutic CD39 inhibitors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Linfocitos T Reguladores , Línea Celular Tumoral , Diferenciación Celular , Apirasa/genética , Apirasa/metabolismo
10.
Animals (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136906

RESUMEN

In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.

11.
Insect Sci ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919237

RESUMEN

Although CRISPR/Cas9 has been widely used in insect gene editing, the need for the microinjection of preblastoderm embryos can preclude the technique being used in insect species with eggs that are small, have hard shells, and/or are difficult to collect and maintain outside of their normal environment. Such is the case with Sogatella furcifera, the white-backed planthopper (WBPH), a significant pest of Oryza sativa (rice) that oviposits inside rice stems. Egg extraction from the stem runs the risk of mechanical damage and hatching is heavily influenced by the micro-environment of the rice stem. To bypass these issues, we targeted embryos prior to oviposition via direct parental (DIPA)-CRISPR, in which Cas9 and single-guide RNAs (sgRNAs) for the WBPH eye pigment gene tryptophan 2,3-dioxygenase were injected into the hemocoel of adult females. Females at varying numbers of days posteclosion were evaluated to determine at what stage their oocyte might be most capable of taking up the gene-editing components. An evaluation of the offspring indicated that the highest G0 gene-edited efficacy (56.7%) occurred in females injected 2 d posteclosion, and that those mutations were heritably transmitted to the G1 generation. This study demonstrates the potential utility of DIPA-CRISPR for future gene-editing studies in non-model insect species and can facilitate the development of novel pest management applications.

12.
Heliyon ; 9(10): e20781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876416

RESUMEN

Background: Given that limited reports have described the survival and risk factors for elderly patients with hypertensive intracerebral hemorrhage (HICH), we aimed to develop a valid but simple prediction nomogram for the survival of HICH patients. Methods: All elderly patients ≥65 years old who were diagnosed with HICH between January 2011 and December 2019 were identified. We performed the least absolute shrinkage and selection operator (Lasso) on the Cox regression model with the R package glmnet. A concordance index was performed to calculate the nomogram discrimination; and calibration curves and decision curves were graphically evaluated by depicting the observed rates against the probabilities predicted by the nomogram. Results: A total of 204 eligible patients were analyzed, and over 20 % of the population was above the age of 80 (65-79 years old, n = 161; 80+ years old, n = 43). A hematoma volume ≥13.64 cm3 was associated with higher 7-day mortality (OR = 6.773, 95 % CI = 2.622-19.481; p < 0.001) and higher 90-day mortality (OR = 3.955, 95 % CI = 1.611-10.090, p = 0.003). A GCS score between 13 and 15 at admission was associated with a 7-day favorable outcome (OR = 0.025, 95 % CI = 0.005-0.086; p < 0.001) and a 90-day favorable outcome (OR = 0.033, 95 % CI = 0.010-0.099; p < 0.001). Conclusions: Our nomogram models were visualized and accurate. Neurosurgeons could use them to assess the prognostic factors and provide advice to patients and their relatives.

13.
J Chem Inf Model ; 63(20): 6451-6461, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788318

RESUMEN

With the development of deep learning, almost all single-domain proteins can be predicted at experimental resolution. However, the structure prediction of multi-domain proteins remains a challenge. Achieving end-to-end protein domain assembly and further improving the accuracy of the full-chain modeling by accurately predicting inter-domain orientation while improving the assembly efficiency will provide significant insights into structure-based drug discovery. In this work, we propose an End-to-End Domain Assembly method based on deep learning, named E2EDA. We first develop RMNet, an EfficientNetV2-based deep learning model that fuses multiple features using an attention mechanism to predict inter-domain rigid motion. Then, the predicted rigid motions are transformed into inter-domain spatial transformations to directly assemble the full-chain model. Finally, the scoring strategy RMscore is designed to select the best model from multiple assembled models. The experimental results show that the average TM-score of the model assembled by E2EDA on the benchmark set (282) is 0.827, which is better than those of other domain assembly methods SADA (0.792) and DEMO (0.730). Meanwhile, on our constructed multi-domain data set from AlphaFold DB, the model reassembled by E2EDA is 7.0% higher in TM-score compared to the full-chain model predicted by AlphaFold2, indicating that E2EDA can capture more accurate inter-domain orientations to improve the quality of the model predicted by AlphaFold2. Furthermore, compared to SADA and AlphaFold2, E2EDA reduced the average runtime on the benchmark by 64.7% and 19.2%, respectively, indicating that E2EDA can significantly improve assembly efficiency through an end-to-end approach. The online server is available at http://zhanglab-bioinf.com/E2EDA.


Asunto(s)
Aprendizaje Profundo , Dominios Proteicos , Proteínas/química
14.
Cancer Lett ; 573: 216370, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660883

RESUMEN

Low-dose metronomic (LDM) chemotherapy, the frequent and continuous use of low doses of conventional chemotherapeutics, is emerging as a promising form of chemotherapy utilization. LDM chemotherapy exerts immunomodulatory effects. However, the underlying mechanism is not fully understood. Here we found that suppressing tumor growth by LDM chemotherapy was dependent on the activation of CD8+T cells. LDM chemotherapy potentiated the cytotoxic function of CD8+T cells by stimulating cancer-cell autonomous type I interferon (IFN) induction. Mechanistically, LDM chemotherapy evoked mitochondrial dysfunction and increased reactive oxygen species (ROS) production. ROS triggered the oxidation of cytosolic mtDNA, which was sensed by cGAS-STING, consequently inducing type I IFN production in the cancer cells. Moreover, the cGAS-STING-IFN axis increased PD-L1 expression and predicted favorable clinical responses to chemoimmunotherapy. Antioxidant N-acetylcysteine inhibited oxidized mtDNA-induced type I IFN production and attenuated the efficacy of combination therapy with LDM chemotherapy and PD-L1 blockade. This study elucidates the critical role of intratumoral oxidized mtDNA sensing in LDM chemotherapy-mediated activation of CD8+T cell immune response. These findings may provide new insights for designing combinatorial immunotherapy for cancer patients.


Asunto(s)
Antígeno B7-H1 , ADN Mitocondrial , Humanos , Especies Reactivas de Oxígeno , Mitocondrias , Linfocitos T CD8-positivos
15.
Bioinformatics ; 39(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37740296

RESUMEN

MOTIVATION: Model quality assessment is a crucial part of protein structure prediction and a gateway to proper usage of models in biomedical applications. Many methods have been proposed for assessing the quality of structural models of protein monomers, but few methods for evaluating protein complex models. As protein complex structure prediction becomes a new challenge, there is an urgent need for model quality assessment methods that can accurately assess the accuracy of interface residues of complex structures. RESULTS: Here, we present DeepUMQA3, a web server for evaluating the accuracy of interface residues of protein complex structures using deep neural networks. For an input complex structure, features are extracted from three levels of overall complex, intra-monomer, and inter-monomer, and an improved deep residual neural network is used to predict per-residue lDDT and interface residue accuracy. DeepUMQA3 ranks first in the blind test of interface residue accuracy estimation in CASP15, with Pearson, Spearman, and AUC of 0.564, 0.535, and 0.755 under the lDDT measurement, which are 17.6%, 23.6%, and 10.9% higher than the second best method, respectively. DeepUMQA3 can also assess the accuracy of all residues in the entire complex and distinguish high- and low-precision residues. AVAILABILITY AND IMPLEMENTATION: The web sever of DeepUMQA3 are freely available at http://zhanglab-bioinf.com/DeepUMQA_server/.

16.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37643613

RESUMEN

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Asunto(s)
Implantación del Embrión , Células Epiteliales , Embarazo , Femenino , Humanos , Animales , Ratones , Implantación del Embrión/genética , Desarrollo Embrionario , Endometrio/fisiología , Diferenciación Celular
17.
J Biol Chem ; 299(9): 105126, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543362

RESUMEN

Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.


Asunto(s)
Envejecimiento , Apoptosis , Células de la Granulosa , Peróxido de Hidrógeno , Factores de Transcripción de Tipo Kruppel , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , Femenino , Humanos , Envejecimiento/metabolismo , Retroalimentación Fisiológica , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Lisofosfolípidos/biosíntesis , Lisofosfolípidos/metabolismo , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regiones Promotoras Genéticas , Esfingosina/biosíntesis , Esfingosina/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Ophthalmol ; 16(8): 1260-1267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602340

RESUMEN

AIM: To explore the correlation between diabetic retinopathy (DR) and Helicobacter pylori (Hp) infection, based on data from a physical examination population. METHODS: This cross-sectional retrospective analysis included data of 73 824 health examination participants from December 2018 to December 2019. Participants were divided into the diabetic group and non-diabetic group, non-diabetic retinopathy (NDR) group, non-proliferative diabetic retinopathy (NPDR) group, proliferative diabetic retinopathy (PDR) group, and Hp infection group. Gender, age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), glycated hemoglobin A1c (HbA1c), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and Hp data were recorded to compare the degree of DR lesions and Hp infection. Logistic regression analysis was used to evaluate the correlation between DR and Hp infection. RESULTS: There was a statistically significant difference between the diabetic and non-diabetic group (χ2=94.17, P<0.0001). Logistic regression analysis showed that male sex, age, BMI, SBP, TG, LDL-C, and Hp infection were independent risk factors for DR. There was no correlation between the degree of DR lesions and Hp infection (ρ=-0.00339, P=0.7753). Age [odds ratio (OR)=1.035, 95%CI: 1.024, 1.046, P<0.0001] and SBP (OR=1.009, 95%CI: 1.004, 1.015, P=0.0013) were independent risk factors for the degree of DR. CONCLUSION: There is a significant correlation between DR and Hp infection in the physical examination population. Hp infection is a risk factor for DR, and there is no significant difference between Hp infection and DR of different pathological degrees. Actively eradicating Hp may be of help to prevent DR.

19.
J Chem Inf Model ; 63(17): 5689-5700, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603823

RESUMEN

Identifying DNA N6-methyladenine (6mA) sites is significantly important to understanding the function of DNA. Many deep learning-based methods have been developed to improve the performance of 6mA site prediction. In this study, to further improve the performance of 6mA site prediction, we propose a new meta method, called Co6mA, to integrate bidirectional long short-term memory (BiLSTM), convolutional neural networks (CNNs), and self-attention mechanisms (SAM) via assembling two different deep learning-based models. The first model developed in this study is called CBi6mA, which is composed of CNN, BiLSTM, and fully connected modules. The second model is borrowed from LA6mA, which is an existing 6mA prediction method based on BiLSTM and SAM modules. Experimental results on two independent testing sets of different model organisms, i.e., Arabidopsis thaliana and Drosophila melanogaster, demonstrate that Co6mA can achieve an average accuracy of 91.8%, covering 89% of all 6mA samples while achieving an average Matthews correlation coefficient value (0.839), which is higher than the second-best method DeepM6A.


Asunto(s)
Arabidopsis , Drosophila melanogaster , Animales , Memoria a Corto Plazo , ADN , Redes Neurales de la Computación
20.
Neuroscience ; 528: 129-139, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37557947

RESUMEN

Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by amyloid-ß (Aß) aggregation and neuroinflammation. G-protein-coupled receptor 34 (Gpr34) was found highly expressed in the hippocampus of APP/PS1 mice. However, its role in AD remains unclear. Herein, the role of Gpr34 as well as its molecular mechanism was explored. Data in GSE85162 were analyzed and the differently expressed genes in the hippocampus tissues of APP/PS1 mouse model of AD were subjected to GO, KEGG and GSEA enrichment analyses. APP/PS1 mice were used as an animal model of AD and the cognitive impairment was evaluated by a water maze test. The level of Gpr34 in hippocampus and BV-2 cells as well as the activation of ERK/NF-κB signal was determined by quantitative real-time PCR, western blot or immunofluorescence. Our results showed that, in BV-2 cells exposed to Aß1-42, Gpr34 knockdown decreased the levels of TNF-α, IL-1ß, IL-6 and iNOS and suppressed the activation of ERK/NF-κB signal. Moreover, the Gpr34-overexpression-induced activation of ERK/NF-κB signal and up-regulated levels of TNF-α, IL-1ß, IL-6 and iNOS were abolished by FR180204, an ERK inhibitor. On the other hand, the in vivo study showed that Gpr34 knockdown ameliorated the cognitive impairment in APP/PS1 mice, decreased the levels of TNF-α, IL-1ß and IL-6, the activation of microglia and ERK/NF-κB signal. In conclusion, Gpr34 knockdown relieved cognitive deficits in APP/PS1 mice and suppressed neuroinflammation and microglial activation, maybe via the ERK/NF-κB signal. It is indicated that the high level of Grp34 in hippocampus may contribute to the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Ratones , Animales , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , FN-kappa B , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ratones Transgénicos , Péptidos beta-Amiloides , Cognición , Modelos Animales de Enfermedad , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...