Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inflamm Res ; 17: 497-506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304414

RESUMEN

Purpose: Both nonthyroidal illness syndrome (NTIS) and disseminated intravascular coagulation (DIC) are commonly occurred in sepsis. The objective of this study is to evaluate the association between NTIS and DIC, as well as their impacts on the mortality in adults with sepsis. Patients and methods: A total of 1219 septic patients in two Chinese academic centers from October 2012 and October 2022 were enrolled in analysis. We conduct logistic regression models to analyze the independent risk factors for DIC. Modified Poisson regression models are used to estimate the relative risk (RR) of NTIS on the 28 days mortality in septic patients with DIC. Correlation analysis between thyroid function parameters and coagulation parameters is performed with Pearson coefficient be reported. Results: DIC is diagnosed on 388 (31.8%) of all the 1219 enrolled septic patients within 72 hours after admission. In multivariate logistic regression models, NTIS (OR 3.19; CI 2.31-4.46; p<0.001) is a statistically significant independent risk factor for DIC after adjustment for potential confounders. Twenty-eight days mortality is significantly higher in DIC patients complicated with NTIS compared with the other DIC patients (23.2% vs 14.0%, p=0.024). This result is also robust in different modified Poisson regression models (Model 1: RR 1.46; CI 1.25-1.70; p<0.001; Model 2: RR 1.35; CI 1.14-1.60; p<0.001; Model 3: RR 1.18; CI 1.02-1.37; p=0.026). Correlation analysis reveals that the thyroid function parameters of FT3, FT4 and TSH only have weak correlations with coagulation parameters of platelet count, fibrinogen, FDP, D-dimers, PT, APTT and INR in sepsis. Conclusion: NTIS is an independent risk factor for DIC in adults with sepsis. DIC patients complicated with NTIS have significantly higher severity and higher rate of mortality.

2.
J Inflamm Res ; 16: 2865-2877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456783

RESUMEN

Background: Platelet activation in the early stage of pancreatitis is the key step developing into pancreatic necrosis. Studies suggested that vitamin C (Vit C) can inhibit platelet activity by targeting CXCL12/CXCR4 pathway. High-dose Vit C were showed to reduce pancreatic necrosis in severe acute pancreatitis (SAP) but the mechanism remains unclear. Here we speculate high-dose Vit C reduce pancreatic necrosis by inhibiting platelet activation through downregulating CXCL12/CXCR4 pathway. Methods: The pancreatic microcirculation of rats was observed by intravital microscopy. The platelet activity of SAP rats treated with or without high-dose Vit C was analyzed by platelet function test. Besides, the activity of platelets preincubated with high-dose Vit C or vehicle from SAP patients was also evaluated. Then, the TFA (CXCR4 agonist) and rCXCL12 were used to neutralize the effect of high-dose Vit C in SAP rats treated with high-dose Vit C. Meanwhile, the levels of enzymes and inflammatory cytokines in rat plasma, and rats' pancreatic histopathology and mortality were assessed. Results: Platelets from animals and patients with SAP are more sensitive to agonists and are more easily activated. Administration of high-dose Vit C significantly ameliorated excessive activation of platelets in SAP rats, ultimately increasing the microvessel density and inducing microthrombus and blood stasis; these results were consistent with clinical sample analysis. Moreover, high-dose Vit C significantly inhibited the release of amylase, lipase, TNF-α, and IL-6 in SAP rat plasma, reducing pancreatic damage and the mortality of SAP rats. However, using TFA and rCXCL12 significantly reversed the effect of high-dose Vit C on excessive activation of platelets, aggravating microcirculation impairment and pancreatic damage. Conclusion: The present study suggests that high-dose Vit C can ameliorate pancreatic necrosis by improving microcirculation disorders of SAP. For the first time, the underlying mechanism is related with inhibiting platelet activation through the CXCL12/CXCR4 pathway.

3.
J Inflamm Res ; 16: 57-67, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636248

RESUMEN

Ischemia superimposed upon pancreatic edema leads to acute necrotizing pancreatitis. One possible mechanism contributing to ischemia is intravascular thrombogenesis since fibrin deposits have been detected in pancreatic capillaries by electron microscope. Current experimental and clinical data provided compelling evidence that the disorders in the blood coagulation system play a critical role in the pathogenesis of severe acute pancreatitis (SAP). This leads to microcirculatory failure of intra- and extrapancreatic organs and multiple organ failure and increases the case fatality rate. However, the mechanism of coagulopathy underlying SAP is not yet clear, although some anticoagulant drugs have entered clinical practice showing improvement in prognosis. Thus, enhanced understanding of the process might improve the treatment strategies with safety and high efficacy. Herein, the pathogenesis of the coagulation system of SAP was reviewed with a focus on the coagulation pathway, intercellular interactions, and complement system, thereby illustrating some anticoagulant therapies and potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...