Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27237, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455542

RESUMEN

As a typical complex network system, the operating environment of rail transit network (RTN) is complex and demanding. This study aims to accurate assess the weaknesses and vulnerability of RTN, which is crucial for ensuring its smooth operation. Taking Chongqing Rail Transit (CRT) as an example, this study developed a network topology model using the spatial L method and analyzed the network structure characteristics, along with the importance of key nodes under different indicators, based on complex network theory. Additionally, this study analyzed the geographical spatial distribution characteristics of nodes based on the topography and urban spatial structure of Chongqing. Then, this study classified the nodes in the RTN according to basic topological indicators, namely degree, betweenness centrality, network efficiency, and passenger flow volume (PFV). The results indicated six cluster of nodes, reflecting the variability in node vulnerability concerning overall influence (providing alternative paths, reducing path length), regional aggregation capacity, and transportation capacity. Finally, this study proposed targeted management strategies for different clusters of nodes and their respective geographical locations, providing necessary references for rational planning, safety protection, and sustainable construction of RTN.

2.
Energy Build ; 251: 111346, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34566246

RESUMEN

Although COVID-19 has significantly changed the higher educational sector, there are few studies revealing how this pandemic has changed the energy use of higher education buildings. This study was conducted not only to disclose the energy use change under COVID-19 but also to identify the corresponding facilities management strategies for future learning and teaching delivery modes under virtual campuses. This study collected the energy use data of 122 buildings across five campuses in Griffith University, located in Southeast Queensland, Australia, during the COVID-19 academic year (February 17, 2020, to February 21, 2021) and during a typical normal academic year (February 18, 2019, to February 16, 2020) by PI Vision Platform, and compared the data using the t-test and multiple linear regression. The results indicated that learning and administration activities became off campus during the pandemic, while research activities remained on campus. During the COVID-19 academic year, an amount of 9,646,933 kWh energy or around 24.88 kWh/m2 of energy use intensity was saved, which accounted for 16% of the total energy use per academic year. Specifically, the shutting down of air conditioning in academic buildings, administration buildings, retail buildings and teaching buildings during COVID-19 saved 4,566 kWh (1.13 kWh/m2), 966 kWh (0.8 kWh/m2), 1,472 kWh (1.4 kWh/m2) and 860 kWh (1.3 kWh/m2) of electricity use per week, respectively, which accounted for 51.5%, 44.3%, 48.3% and 57.1% of total energy use per week during this period, respectively. Based on this analysis and the changing educational environment, this study also speculated on the energy implications of future teaching and learning practices, which provided guidance to the facilities management under virtual campuses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...