Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(1): 110619, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385740

RESUMEN

The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Transporte de Electrón , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Rep ; 31(4): 107567, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32348752

RESUMEN

The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane ß-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of ß-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood. We report that the yeast MIM complex promotes the insertion of proteins with N-terminal (signal-anchored) or C-terminal (tail-anchored) membrane anchors. The MIM complex exists in three dynamic populations. MIM interacts with TOM to accept precursor proteins from the receptor Tom70. Free MIM complexes insert single-spanning proteins that are imported in a Tom70-independent manner. Finally, coupling of MIM and SAM promotes early assembly steps of TOM subunits. We conclude that the MIM complex is a major and versatile protein translocase of the mitochondrial outer membrane.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Humanos , Conformación Proteica en Hélice alfa
3.
Cell Rep ; 30(9): 3092-3104.e4, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130909

RESUMEN

Mitochondrial preproteins contain amino-terminal presequences directing them to the presequence translocase of the mitochondrial inner membrane (TIM23 complex). Depending on additional downstream import signals, TIM23 either inserts preproteins into the inner membrane or translocates them into the matrix. Matrix import requires the coupling of the presequence translocase-associated motor (PAM) to TIM23. The molecular mechanisms coordinating preprotein recognition by TIM23 in the intermembrane space (IMS) with PAM activation in the matrix are unknown. Here we show that subsequent to presequence recognition in the IMS, the Tim50 matrix domain facilitates the recruitment of the coupling factor Pam17. Next, the IMS domain of Tim50 promotes PAM recruitment to TIM23. Finally, the Tim50 transmembrane segment stimulates the matrix-directed import-driving force exerted by PAM. We propose that recognition of preprotein segments in the IMS and transfer of signal information across the inner membrane by Tim50 determine import motor activation.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Dominios Proteicos , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
4.
Curr Biol ; 30(6): 1119-1127.e5, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142709

RESUMEN

In mitochondria, the carrier translocase (TIM22 complex) facilitates membrane insertion of multi-spanning proteins with internal targeting signals into the inner membrane [1-3]. Tom70, a subunit of TOM complex, represents the major receptor for these precursors [2, 4-6]. After transport across the outer membrane, the hydrophobic carriers engage with the small TIM protein complex composed of Tim9 and Tim10 for transport across the intermembrane space (IMS) toward the TIM22 complex [7-12]. Tim22 represents the pore-forming core unit of the complex [13, 14]. Only a small subset of TIM22 cargo molecules, containing four or six transmembrane spans, have been experimentally defined. Here, we used a tim22 temperature-conditional mutant to define the TIM22 substrate spectrum. Along with carrier-like cargo proteins, we identified subunits of the mitochondrial pyruvate carrier (MPC) as unconventional TIM22 cargos. MPC proteins represent substrates with atypical topology for this transport pathway. In agreement with this, a patient affected in TIM22 function displays reduced MPC levels. Our findings broaden the repertoire of carrier pathway substrates and challenge current concepts of TIM22-mediated transport processes.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transporte Biológico , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 9(1): 4028, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279421

RESUMEN

The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Levaduras
6.
Science ; 359(6373)2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29348211

RESUMEN

The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of ß-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of ß-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by ß-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of ß-barrel proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Porinas/genética , Conformación Proteica en Lámina beta , Pliegue de Proteína , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Canal Aniónico 1 Dependiente del Voltaje/genética
7.
J Cell Biol ; 216(1): 83-92, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28011846

RESUMEN

Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.


Asunto(s)
Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Genotipo , Hidrólisis , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Fenotipo , Precursores de Proteínas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
8.
Nat Commun ; 7: 13021, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721450

RESUMEN

The endoplasmic reticulum-mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 ß-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the ß-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and ß-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Modelos Biológicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
9.
J Mol Biol ; 428(6): 1041-1052, 2016 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-26827728

RESUMEN

The highly organized mitochondrial inner membrane harbors enzymes that produce the bulk of cellular ATP via oxidative phosphorylation. The majority of inner membrane protein precursors are synthesized in the cytosol. Precursors with a cleavable presequence are imported by the presequence translocase (TIM23 complex), while other precursors containing internal targeting signals are imported by the carrier translocase (TIM22 complex). Both TIM23 and TIM22 are activated by the transmembrane electrochemical potential. Many small inner membrane proteins, however, do not resemble canonical TIM23 or TIM22 substrates and their mechanism of import is unknown. We report that subunit e of the F1Fo-ATP synthase, a small single-spanning inner membrane protein that is critical for inner membrane organization, is imported by TIM23 in a process that does not require activation by the membrane potential. Absence of positively charged residues at the matrix-facing amino-terminus of subunit e facilitates membrane potential-independent import. Instead, engineered positive charges establish a dependence of the import reaction on the electrochemical potential. Our results have two major implications. First, they reveal an unprecedented pathway of protein import into the mitochondrial inner membrane, which is mediated by TIM23. Second, they directly demonstrate the role of the membrane potential in driving the electrophoretic transport of positively charged protein segments across the inner membrane.


Asunto(s)
Potenciales de la Membrana , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Mutacional de ADN , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/genética , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 290(18): 11611-22, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25792736

RESUMEN

Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Chaperonina 60/química , Saccharomyces cerevisiae/citología
11.
Mol Cell ; 56(5): 641-52, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25454944

RESUMEN

The majority of preproteins destined for mitochondria carry N-terminal presequences. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) plays a central role in protein sorting. Preproteins are either translocated through the TIM23 complex into the matrix or are laterally released into the inner membrane. We report that the small hydrophobic protein Mgr2 controls the lateral release of preproteins. Mgr2 interacts with preproteins in transit through the TIM23 complex. Overexpression of Mgr2 delays preprotein release, whereas a lack of Mgr2 promotes preprotein sorting into the inner membrane. Preproteins with a defective inner membrane sorting signal are translocated into the matrix in wild-type mitochondria but are released into the inner membrane in Mgr2-deficient mitochondria. We conclude that Mgr2 functions as a lateral gatekeeper of the mitochondrial presequence translocase, providing quality control for the membrane sorting of preproteins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/genética , Metotrexato/farmacología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
12.
PLoS One ; 9(12): e112263, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25479159

RESUMEN

The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif. In addition to this motif, some of these proteins contain a DNA-binding motif of the bZIP type, while being nonetheless globally highly divergent. The genome of the yeast Hansenula polymorpha contains two HAP4-like genes encoding the protein HpHap4-A which, like ScHap4, is devoid of a bZIP motif, and HpHap4-B which contains it. This species has been chosen for a detailed examination of their respective properties. Based mostly on global gene expression studies performed in the S. cerevisiae HAP4 disruption mutant (ScΔhap4), we show here that HpHap4-A is functionally equivalent to ScHap4, whereas HpHap4-B is not. Moreover HpHAP4-B is able to complement the H2O2 hypersensitivity of the ScYap1 deletant, YAP1 being, in S. cerevisiae, the main regulator of oxidative stress. Finally, a transcriptomic analysis performed in the ScΔyap1 strain overexpressing HpHAP4-B shows that HpHap4-B acts both on oxidative stress response and carbohydrate metabolism in a manner different from both ScYap1 and ScHap4. Deletion of these two genes in their natural host, H. polymorpha, confirms that HpHAP4-A participates in the control of the fermentation/respiration balance, while HpHAP4-B is involved in oxidative stress since its deletion leads to hypersensitivity to H2O2. These data, placed in an evolutionary context, raise new questions concerning the evolution of the HAP4 transcriptional regulation function and suggest that Yap1 and Hap4 have diverged from a unique regulatory protein in the fungal ancestor.


Asunto(s)
Factor de Unión a CCAAT/genética , Estrés Oxidativo/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Secuencias de Aminoácidos/genética , Factor de Unión a CCAAT/metabolismo , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Peróxido de Hidrógeno/química , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
13.
Science ; 346(6213): 1109-13, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25378463

RESUMEN

Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.


Asunto(s)
Ciclo Celular , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Citosol/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas
14.
J Biol Chem ; 289(39): 27352-27362, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25124039

RESUMEN

The majority of mitochondrial proteins are synthesized with amino-terminal signal sequences. The presequence translocase of the inner membrane (TIM23 complex) mediates the import of these preproteins. The essential TIM23 core complex closely cooperates with partner protein complexes like the presequence translocase-associated import motor and the respiratory chain. The inner mitochondrial membrane also contains a large number of metabolite carriers, but their association with preprotein translocases has been controversial. We performed a comprehensive analysis of the TIM23 interactome based on stable isotope labeling with amino acids in cell culture. Subsequent biochemical studies on identified partner proteins showed that the mitochondrial ADP/ATP carrier associates with the membrane-embedded core of the TIM23 complex in a stoichiometric manner, revealing an unexpected connection of mitochondrial protein biogenesis to metabolite transport. Our data indicate that direct TIM23-AAC coupling may support preprotein import into mitochondria when respiratory activity is low.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
EMBO Rep ; 15(6): 678-85, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24781695

RESUMEN

The mitochondrial outer membrane contains integral α-helical and ß-barrel proteins that are imported from the cytosol. The machineries importing ß-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/fisiología , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Autorradiografía , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutagénesis , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química
16.
Cell Metab ; 18(4): 578-87, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093680

RESUMEN

Most mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import. It is unknown whether Tom22 is regulated under different metabolic conditions. We report that CK1, which is involved in glucose-induced signal transduction, is bound to mitochondria. CK1 phosphorylates Tom22 at Thr57 and stimulates the assembly of Tom22 and Tom20. In contrast, protein kinase A (PKA), which is also activated by the addition of glucose, phosphorylates the precursor of Tom22 at Thr76 and impairs its import. Thus, PKA functions in an opposite manner to CK1 and CK2. Our results reveal that three kinases regulate the import and assembly of Tom22, demonstrating that the central receptor is a major target for the posttranslational regulation of mitochondrial protein import.


Asunto(s)
Glucosa/farmacología , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos
17.
J Biol Chem ; 288(43): 30931-43, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24030826

RESUMEN

The yeast protein Zim17 belongs to a unique class of co-chaperones that maintain the solubility of Hsp70 proteins in mitochondria and plastids of eukaryotic cells. However, little is known about the functional cooperation between Zim17 and mitochondrial Hsp70 proteins in vivo. To analyze the effects of a loss of Zim17 function in the authentic environment, we introduced novel conditional mutations within the ZIM17 gene of the model organism Saccharomyces cerevisiae that allowed a recovery of temperature-sensitive but respiratory competent zim17 mutant cells. On fermentable growth medium, the mutant cells were prone to acquire respiratory deficits and showed a strong aggregation of the mitochondrial Hsp70 Ssq1 together with a concomitant defect in Fe/S protein biogenesis. In contrast, under respiring conditions, the mitochondrial Hsp70s Ssc1 and Ssq1 exhibited only a partial aggregation. We show that the induction of the zim17 mutant phenotype leads to strong import defects for Ssc1-dependent matrix-targeted precursor proteins that correlate with a significantly reduced binding of newly imported substrate proteins to Ssc1. We conclude that Zim17 is not only required for the maintenance of mtHsp70 solubility but also directly assists the functional interaction of mtHsp70 with substrate proteins in a J-type co-chaperone-dependent manner.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Hierro/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas Mitocondriales/genética , Mutación , Unión Proteica/fisiología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Cell ; 154(3): 596-608, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911324

RESUMEN

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of ß-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the ß-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring ß-barrel formation in vivo and in organello and demonstrated that the ß-barrel was formed and membrane inserted while the precursor was bound to SAM. ß-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Mutación , Porinas/química , Porinas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Biol Cell ; 24(17): 2609-19, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864706

RESUMEN

The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Complejo IV de Transporte de Electrones/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Biochim Biophys Acta ; 1827(5): 612-26, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23274250

RESUMEN

The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/metabolismo , Humanos , Modelos Biológicos , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA