Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ital J Pediatr ; 45(1): 36, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871574

RESUMEN

BACKGROUND: Migraine is one of the most prevalent chronic pain manifestations of childhood. Despite the multitude of available treatments, parents are often concerned about chronic therapies and pediatricians have insufficient confidence in prescribing prophylactic drugs. Therefore, there is now growing interest for natural supplements used to control recurrent migraine headaches. Such approach may increase acceptance and adherence to long-term prophylaxis therapy in children. METHODS: This is an observational multicenter study performed in children (n = 91) with migraine, with (MO) or without aura (MA), or tension-type headache (TTH). A fixed-dose Andrographis paniculata, CoQ10, riboflavin, and magnesium, was administered for 16 weeks. Patients were evaluated at baseline (T0), at week 8 (T1) and at the end of treatment at week 16 (T2). A follow-up period occurred at week 20 (T3) and week 32 (T4). RESULTS: The herbal supplement significantly reduced the frequency of headaches in TTH patients during treatment period (T0: 11.97 + 1.92 vs T2: 5.13 + 1.93; p < 0.001) and the efficacy was maintained after 16 weeks of treatment withdrawal (T4: 4.46 + 1.75; p < 0.001 vs T0). The frequency of migraine attacks was also reduced in the MO group during treatment (T0: 9.70 + 0.96 vs T2: 4.03 + 0.75; p < 0.01) and after withdrawal (T4: 2.96 + 0.65; p < 0.01 vs T0). Conversely, MA patients showed reduction in migraine's frequency during treatment (T0: 8.74 + 1.91 vs T2: 3.78 + 2.02; p < 0.01) but not at the end of the study (T4: 5.57 + 3.31; p > 0.05 vs T0). TTH patients did not report significant improvement of pain intensity. A significant effect was observed in the MO group during treatment (T0: 3.06 + 0.11 vs T2: 2.14 + 0.19; p < 0.001) and after treatment withdrawal (T4: 2.20 + 0.21; p < 0.001 vs T0). Likewise, MA group showed a significant treatment effect (T0: 2.57 + 0.20 vs T2: 0.86 + 0.45; p < 0.001) and the efficacy persisted at the end of the study (T4: 1.00 + 0.58; p < 0.001 vs T0). CONCLUSION: This fixed-dose Tanacetum parthenium preparation improved headache frequency and pain intensity in children affected by TTH. Despite the main limits, this study supports the use of nutraceutical in pediatric headache/migraine.


Asunto(s)
Suplementos Dietéticos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/prevención & control , Extractos Vegetales/uso terapéutico , Tanacetum parthenium , Adolescente , Análisis de Varianza , Niño , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Salud Holística , Humanos , Italia , Magnesio/uso terapéutico , Masculino , Dimensión del Dolor , Plantas Medicinales , Estudios Prospectivos , Riboflavina/uso terapéutico , Medición de Riesgo , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas , Cefalea de Tipo Tensional/tratamiento farmacológico , Cefalea de Tipo Tensional/prevención & control , Resultado del Tratamiento , Ubiquinona/análogos & derivados , Ubiquinona/uso terapéutico
2.
Epilepsia ; 58(11): 1993-2001, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28913875

RESUMEN

OBJECTIVES: Thrombospondins, which are known to interact with the α2 δ subunit of voltage-sensitive calcium channels to stimulate the formation of excitatory synapses, have recently been implicated in the process of epileptogenesis. No studies have been so far performed on thrombospondins in models of absence epilepsy. We examined whether expression of the gene encoding for thrombospondin-1 was altered in the brain of WAG/Rij rats, which model absence epilepsy in humans. In addition, we examined the frequency of genetic variants of THBS1 in a large cohort of children affected by idiopathic/genetic generalized epilepsies (IGE/GGEs). METHODS: We measured the transcripts of thrombospondin-1 and α2 δ subunit, and protein levels of α2 δ, Rab3A, and the vesicular glutamate transporter, VGLUT1, in the somatosensory cortex and ventrobasal thalamus of presymptomatic and symptomatic WAG/Rij rats and in two control strains by real-time polymerase chain reaction (PCR) and immunoblotting. We examined the genetic variants of THBS1 and CACNA2D1 in two independent cohorts of patients affected by IGE/GGE recruited through the Genetic Commission of the Italian League Against Epilepsy (LICE) and the EuroEPINOMICS-CoGIE Consortium. RESULTS: Thrombospondin-1 messenger RNA (mRNA) levels were largely reduced in the ventrobasal thalamus of both presymptomatic and symptomatic WAG/Rij rats, whereas levels in the somatosensory cortex were unchanged. VGLUT1 protein levels were also reduced in the ventrobasal thalamus of WAG/Rij rats. Genetic variants of THBS1 were significantly more frequent in patients affected by IGE/GGE than in nonepileptic controls, whereas the frequency of CACNA2D1 was unchanged. SIGNIFICANCE: These findings suggest that thrombospondin-1 may have a role in the pathogenesis of IGE/GGEs.


Asunto(s)
Canales de Calcio/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/genética , Epilepsia Generalizada/genética , Trombospondina 1/genética , Animales , Canales de Calcio/biosíntesis , Estudios de Cohortes , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Generalizada/metabolismo , Humanos , Masculino , Ratas , Ratas Wistar , Trombospondina 1/biosíntesis
3.
Curr Neuropharmacol ; 15(6): 918-925, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28290248

RESUMEN

BACKGROUND: Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the pathological oscillatory activity of this network, and some of the first-line drugs used in the treatment of absence epilepsy inhibit T-type calcium channels. The α2δ subunit is a component of high voltage-activated VSCCs (i.e., L-, N-, P/Q-, and R channels) and studies carried out in heterologous expression systems suggest that it may also associate with T channels. The α2δ subunit is also targeted by thrombospondins, which regulate synaptogenesis in the central nervous system. OBJECTIVE: To discuss the potential role for the thrombospondin/α2δ axis in the pathophysiology of absence epilepsy. METHODS: We searched PubMed articles for the terms "absence epilepsy", "T-type voltage-sensitive calcium channels", "α2δ subunit", "ducky mice", "pregabalin", "gabapentin", "thrombospondins", and included papers focusing this Review's scope. RESULTS: We moved from the evidence that mice lacking the α2δ-2 subunit show absence seizures and α 2δ ligands (gabapentin and pregabalin) are detrimental in the treatment of absence epilepsy. This suggests that α2δ may be protective against absence epilepsy via a mechanism that does not involve T channels. We discuss the interaction between thrombospondins and α2δ and its potential relevance in the regulation of excitatory synaptic formation in the cortico-thalamo-cortical network. CONCLUSION: We speculate on the possibility that the thrombospondin/α2 δ axis is critical for the correct functioning of the cortico-thalamo-cortical network, and that abnormalities in this axis may play a role in the pathophysiology of absence epilepsy.


Asunto(s)
Canales de Calcio/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Animales , Epilepsia Tipo Ausencia/tratamiento farmacológico , Humanos , Trombospondinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...