Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1278990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941658

RESUMEN

Introduction: Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods: We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results: All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion: Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.

2.
Mol Ecol ; 32(24): 6824-6838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37901963

RESUMEN

Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 µm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.


Asunto(s)
Chlorophyta , Microbiota , Archaea/genética , Fitoplancton/genética , Lagos/microbiología , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
3.
Sci Rep ; 13(1): 10696, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400579

RESUMEN

The plant microbiome has recently emerged as a reservoir for the development of sustainable alternatives to chemical fertilizers and pesticides. However, the response of plants to beneficial microbes emerges as a critical issue to understand the molecular basis of plant-microbiota interactions. In this study, we combined root colonization, phenotypic and transcriptomic analyses to unravel the commonalities and specificities of the response of rice to closely related Burkholderia s.l. endophytes. In general, these results indicate that a rice-non-native Burkholderia s.l. strain, Paraburkholderia phytofirmans PsJN, is able to colonize the root endosphere while eliciting a markedly different response compared to rice-native Burkholderia s.l. strains. This demonstrates the variability of plant response to microbes from different hosts of origin. The most striking finding of the investigation was that a much more conserved response to the three endophytes used in this study is elicited in leaves compared to roots. In addition, transcriptional regulation of genes related to secondary metabolism, immunity, and phytohormones appear to be markers of strain-specific responses. Future studies need to investigate whether these findings can be extrapolated to other plant models and beneficial microbes to further advance the potential of microbiome-based solutions for crop production.


Asunto(s)
Burkholderia , Oryza , Burkholderia/genética , Oryza/genética , Endófitos , Transcriptoma , Raíces de Plantas/genética
4.
Appl Environ Microbiol ; 88(14): e0064222, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862731

RESUMEN

Burkholderia vietnamiensis LMG10929 and Paraburkholderia kururiensis M130 are bacterial rice growth-promoting models. Besides this common ecological niche, species of the Burkholderia genus are also found as opportunistic human pathogens, while Paraburkholderia species are mostly environmental and plant associated. In this study, we compared the genetic strategies used by B. vietnamiensis and P. kururiensis to colonize two subspecies of their common host, Oryza sativa subsp. japonica (cv. Nipponbare) and O. sativa subsp. indica (cv. IR64). We used high-throughput screening of transposon insertional mutant libraries (Tn-seq) to infer which genetic elements have the highest fitness contribution during root surface colonization at 7 days postinoculation. Overall, we detected twice more genes in B. vietnamiensis involved in rice root colonization than in P. kururiensis, including genes contributing to the tolerance of plant defenses, which suggests a stronger adverse reaction of rice toward B. vietnamiensis than toward P. kururiensis. For both strains, the bacterial fitness depends on a higher number of genes when colonizing indica rice compared to japonica. These divergences in host pressure on bacterial adaptation could be partly linked to the cultivars' differences in nitrogen assimilation. We detected several functions commonly enhancing root colonization in both bacterial strains, e.g., Entner-Doudoroff (ED) glycolysis. Less frequently and more strain specifically, we detected functions limiting root colonization such as biofilm production in B. vietnamiensis and quorum sensing in P. kururiensis. The involvement of genes identified through the Tn-seq procedure as contributing to root colonization, i.e., ED pathway, c-di-GMP cycling, and cobalamin synthesis, was validated by directed mutagenesis and competition with wild-type (WT) strains in rice root colonization assays. IMPORTANCEBurkholderiaceae are frequent and abundant colonizers of the rice rhizosphere and interesting candidates to investigate for growth promotion. Species of Paraburkholderia have repeatedly been described to stimulate plant growth. However, the closely related Burkholderia genus includes both beneficial and phytopathogenic species, as well as species able to colonize animal hosts and cause disease in humans. We need to understand to what extent the bacterial strategies used for the different biotic interactions differ depending on the host and if strains with agricultural potential could also pose a threat toward other plant hosts or humans. To start answering these questions, we used in this study transposon sequencing to identify genetic traits in Burkholderia vietnamiensis and Paraburkholderia kururiensis that contribute to the colonization of two different rice varieties. Our results revealed large differences in the fitness gene sets between the two strains and between the host plants, suggesting a strong specificity in each bacterium-plant interaction.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Burkholderiaceae , Oryza , Animales , Burkholderia/metabolismo , Complejo Burkholderia cepacia/genética , Burkholderiaceae/genética , Humanos , Mutagénesis Insercional , Oryza/microbiología , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...