Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Synchrotron Radiat ; 29(Pt 2): 581-590, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254323

RESUMEN

ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.


Asunto(s)
Lentes , Sincrotrones , Cristalografía por Rayos X , Recolección de Datos , Sustancias Macromoleculares/química
3.
J Synchrotron Radiat ; 27(Pt 3): 844-851, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381789

RESUMEN

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s-1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.

4.
J Synchrotron Radiat ; 26(Pt 2): 393-405, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855248

RESUMEN

MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF - the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community.

5.
J Synchrotron Radiat ; 25(Pt 4): 1249-1260, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979188

RESUMEN

ID30B is an undulator-based high-intensity, energy-tuneable (6.0-20 keV) and variable-focus (20-200 µm in diameter) macromolecular crystallography (MX) beamline at the ESRF. It was the last of the ESRF Structural Biology Group's beamlines to be constructed and commissioned as part of the ESRF's Phase I Upgrade Program and has been in user operation since June 2015. Both a modified microdiffractometer (MD2S) incorporating an in situ plate screening capability and a new flexible sample changer (the FlexHCD) were specifically developed for ID30B. Here, the authors provide the current beamline characteristics and detail how different types of MX experiments can be performed on ID30B (http://www.esrf.eu/id30b).

6.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 966-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27487827

RESUMEN

Automation of the mounting of cryocooled samples is now a feature of the majority of beamlines dedicated to macromolecular crystallography (MX). Robotic sample changers have been developed over many years, with the latest designs increasing capacity, reliability and speed. Here, the development of a new sample changer deployed at the ESRF beamline MASSIF-1 (ID30A-1), based on an industrial six-axis robot, is described. The device, named RoboDiff, includes a high-capacity dewar, acts as both a sample changer and a high-accuracy goniometer, and has been designed for completely unattended sample mounting and diffraction data collection. This aim has been achieved using a high level of diagnostics at all steps of the process from mounting and characterization to data collection. The RoboDiff has been in service on the fully automated endstation MASSIF-1 at the ESRF since September 2014 and, at the time of writing, has processed more than 20 000 samples completely automatically.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Proteínas/química , Animales , Bacillus/química , Proteínas Bacterianas/química , Bovinos , Cristalografía por Rayos X/economía , Cristalografía por Rayos X/métodos , Diseño de Equipo , Robótica , Programas Informáticos , Termolisina/química , Tripsina/química
7.
J Appl Crystallogr ; 46(Pt 3): 804-810, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23682196

RESUMEN

The development of automated high-intensity macromolecular crystallography (MX) beamlines at synchrotron facilities has resulted in a remarkable increase in sample throughput. Developments in X-ray detector technology now mean that complete X-ray diffraction datasets can be collected in less than one minute. Such high-speed collection, and the volumes of data that it produces, often make it difficult for even the most experienced users to cope with the deluge. However, the careful reduction of data during experimental sessions is often necessary for the success of a particular project or as an aid in decision making for subsequent experiments. Automated data reduction pipelines provide a fast and reliable alternative to user-initiated processing at the beamline. In order to provide such a pipeline for the MX user community of the European Synchrotron Radiation Facility (ESRF), a system for the rapid automatic processing of MX diffraction data from single and multiple positions on a single or multiple crystals has been developed. Standard integration and data analysis programs have been incorporated into the ESRF data collection, storage and computing environment, with the final results stored and displayed in an intuitive manner in the ISPyB (information system for protein crystallography beamlines) database, from which they are also available for download. In some cases, experimental phase information can be automatically determined from the processed data. Here, the system is described in detail.

8.
J Synchrotron Radiat ; 19(Pt 3): 455-61, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22514185

RESUMEN

ID29 is an ESRF undulator beamline with a routinely accessible energy range of between 20.0 keV and 6.0 keV (λ = 0.62 Što 2.07 Å) dedicated to the use of anomalous dispersion techniques in macromolecular crystallography. Since the beamline was first commissioned in 2001, ID29 has, in order to provide an improved service to both its academic and proprietary users, been the subject of almost continuous upgrade and refurbishment. It is now also the home to the ESRF Cryobench facility, ID29S. Here, the current status of the beamline is described and plans for its future are briefly outlined.


Asunto(s)
Sustancias Macromoleculares/química , Sincrotrones/instrumentación , Tripsina/química , Difracción de Rayos X
9.
J Synchrotron Radiat ; 18(Pt 3): 381-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21525646

RESUMEN

A reliable and reproducible method to automatically characterize the radiation sensitivity of macromolecular crystals at the ESRF beamlines has been developed. This new approach uses the slope of the linear dependence of the overall isotropic B-factor with absorbed dose as the damage metric. The method has been implemented through an automated procedure using the EDNA on-line data analysis framework and the MxCuBE data collection control interface. The outcome of the procedure can be directly used to design an optimal data collection strategy. The results of tests carried out on a number of model and real-life crystal systems are presented.

10.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 8): 855-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20693684

RESUMEN

Crystals of biological macromolecules often exhibit considerable inter-crystal and intra-crystal variation in diffraction quality. This requires the evaluation of many samples prior to data collection, a practice that is already widespread in macromolecular crystallography. As structural biologists move towards tackling ever more ambitious projects, new automated methods of sample evaluation will become crucial to the success of many projects, as will the availability of synchrotron-based facilities optimized for high-throughput evaluation of the diffraction characteristics of samples. Here, two examples of the types of advanced sample evaluation that will be required are presented: searching within a sample-containing loop for microcrystals using an X-ray beam of 5 microm diameter and selecting the most ordered regions of relatively large crystals using X-ray beams of 5-50 microm in diameter. A graphical user interface developed to assist with these screening methods is also presented. For the case in which the diffraction quality of a relatively large crystal is probed using a microbeam, the usefulness and implications of mapping diffraction-quality heterogeneity (diffraction cartography) are discussed. The implementation of these techniques in the context of planned upgrades to the ESRF's structural biology beamlines is also presented.


Asunto(s)
Cristalografía por Rayos X/métodos , Animales , Bovinos , Mitocondrias/enzimología , ATPasas de Translocación de Protón/análisis , ATPasas de Translocación de Protón/química , Receptores Adrenérgicos beta/análisis , Receptores Adrenérgicos beta/química , Termolisina/análisis , Termolisina/química
11.
J Synchrotron Radiat ; 17(5): 700-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20724792

RESUMEN

The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.


Asunto(s)
Cristalografía por Rayos X/métodos , Programas Informáticos , Sincrotrones , Hidrolasas de Éster Carboxílico/química , Bases de Datos Factuales , Sustancias Macromoleculares/química , Espectrometría por Rayos X , Termolisina/química
12.
J Synchrotron Radiat ; 17(1): 107-18, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20029119

RESUMEN

The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.


Asunto(s)
Biopolímeros/química , Cristalografía por Rayos X/instrumentación , Lentes , Sincrotrones/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Francia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Synchrotron Radiat ; 16(Pt 6): 803-12, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19844017

RESUMEN

ID14-4 at the ESRF is the first tunable undulator-based macromolecular crystallography beamline that can celebrate a decade of user service. During this time ID14-4 has not only been instrumental in the determination of the structures of biologically important molecules but has also contributed significantly to the development of various instruments, novel data collection schemes and pioneering radiation damage studies on biological samples. Here, the evolution of ID14-4 over the last decade is presented, and some of the major improvements that were carried out in order to maintain its status as one of the most productive macromolecular crystallography beamlines are highlighted. The experimental hutch has been upgraded to accommodate a high-precision diffractometer, a sample changer and a large CCD detector. More recently, the optical hutch has been refurbished in order to improve the X-ray beam quality on ID14-4 and to incorporate the most modern and robust optical elements used at other ESRF beamlines. These new optical elements will be described and their effect on beam stability discussed. These studies may be useful in the design, construction and maintenance of future X-ray beamlines for macromolecular crystallography and indeed other applications, such as those planned for the ESRF upgrade.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Sincrotrones/instrumentación , Sustancias Macromoleculares/química , Difracción de Rayos X/instrumentación
14.
J Synchrotron Radiat ; 13(Pt 3): 227-38, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16645249

RESUMEN

The demand for access to macromolecular crystallography synchrotron beam time continues to increase. To meet this demand the ESRF has constructed a dual station beamline using a canted undulator system as the X-ray source. The first phase of the beamline to be constructed is ID23-1, a tunable MAD-capable station with a mini-focus X-ray beam. The beamline makes use of well characterized optical elements: a channel-cut monochromator with a high-precision toroidal mirror to focus the X-ray beam. The beamline has been conceived with the aim of providing high levels of automation to create an industrial-like environment for protein crystallography. A new software suite has been developed to permit reliable easy operation for the beamline users and beamline staff. High levels of diagnostics are built in to allow rapid trouble-shooting. These developments are now being exported to the ESRF macromolecular crystallography beamline complex and have been made in a modular fashion to facilitate transportability to other synchrotrons.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Óptica y Fotónica/instrumentación , Robótica/instrumentación , Sincrotrones/instrumentación , Diseño de Equipo , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA