Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 149(12): 3317-3324, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742381

RESUMEN

In this work, the release of giant liposome (∼100 µm in diameter) content was imaged by shadow electrochemiluminescence (ECL) microscopy. Giant unilamellar liposomes were pre-loaded with a sucrose solution and allowed to sediment at an ITO electrode surface immersed in a solution containing a luminophore ([Ru(bpy)3]2+) and a sacrificial co-reactant (tri-n-propylamine). Upon polarization, the electrode exhibited illumination over its entire surface thanks to the oxidation of ECL reagents. However, as soon as liposomes reached the electrode surface, dark spots appeared and then spread over time on the surface. This observation reflected a blockage of the electrode surface at the contact point between the liposome and the electrode surface, followed by the dilution of ECL reagents after the rupture of the liposome membrane and release of its internal ECL-inactive solution. Interestingly, ECL reappeared in areas where it initially faded, indicating back-diffusion of ECL reagents towards the previously diluted area and thus confirming liposome permeabilization. The whole process was analyzed qualitatively and quantitatively within the defined region of interest. Two mass transport regimes were identified: a gravity-driven spreading process when the liposome releases its content leading to ECL vanishing and a diffusive regime when ECL recovers. The reported shadow ECL microscopy should find promising applications for the imaging of transient events such as molecular species released by artificial or biological vesicles.


Asunto(s)
Electrodos , Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Liposomas/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Propilaminas/química , Liposomas Unilamelares/química , Sacarosa/química , Compuestos de Estaño
2.
Anal Bioanal Chem ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227016

RESUMEN

Herein, transient releases either from NADH-loaded liposomes or enzymatic reactions confined in giant liposomes were imaged by electrochemiluminescence (ECL). NADH was first encapsulated with the [Ru(bpy)3]2+ luminophore inside giant liposomes (around 100 µm in diameter) made of DOPC/DOPG phospholipids (i.e., 1,2-dioleolyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt) on their inner- and outer-leaflet, respectively. Then, membrane permeabilization triggered upon contact between the liposome and a polarized ITO electrode surface and ECL was locally generated. Combination of amperometry, photoluminescence, and ECL provided a comprehensive monitoring of a single liposome opening and content release. In a second part, the work is focused on the ECL characterization of NADH produced by glucose dehydrogenase (GDH)-catalyzed oxidation of glucose in the confined environment delimited by the liposome membrane. This was achieved by encapsulating both the ECL and catalytic reagents (i.e., the GDH, glucose, NAD+, and [Ru(bpy)3]2+) in the liposome. In accordance with the results obtained, NADH can be used as a biologically compatible ECL co-reactant to image membrane permeabilization events of giant liposomes. Under these conditions, the ECL signal duration was rather long (around 10 s). Since many enzymatic reactions involve the NADH/NAD+ redox couple, this work opens up interesting prospects for the characterization of enzymatic reactions taking place notably in artificial cells and in confined environments.

3.
Bioelectrochemistry ; 152: 108454, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37172391

RESUMEN

Photosynthesis is a fundamental process used by Nature to convert solar energy into chemical energy. For the last twenty years, many solutions have been explored to provide electrical power from the photosynthetic chain. In this context, the coupling between microalgae and exogenous quinones is an encouraging strategy because of the capability of quinones to be reduced by the photosynthetic chain. The ability of a quinone to be a good or bad electron acceptor can be evaluated by fluorescence measurements. Fluorescence analyses are thus a convenient tool helping to define a diverting parameter for some quinones. However, this parameter is implicitly designed on the basis of a particular light capture mechanism by algae. In this paper, we propose to revisit previous fluorescence experimental data by considering the two possible mechanisms (lake vs. puddle) and discussing their implication on the conclusions of the analysis. In particular, we show that the maximum extraction efficiency depends on the mechanism (in the case of 2,6-dichlorobenzoquinone - 2,6-DCBQ, (0.45 ± 0.02) vs (0.61 ± 0.03) for lake and puddle mechanisms respectively) but that the trends for different quinones remain correlated to the redox potentials independently of the mechanism.


Asunto(s)
Microalgas , Transporte de Electrón , Fluorescencia , Quinonas , Fotosíntesis , Oxidación-Reducción
4.
ACS Chem Neurosci ; 14(6): 1063-1070, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36847485

RESUMEN

Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep-promoting molecules. However, the cellular and molecular mechanisms of the PGD2-induced activation of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO), the major nonrapid eye movement (NREM)-sleep center, still remains unclear. We here show that PGD2 receptors (DP1) are not only expressed in the leptomeninges but also in astrocytes from the VLPO. We further demonstrate, by performing real-time measurements of extracellular adenosine using purine enzymatic biosensors in the VLPO, that PGD2 application causes a 40% increase in adenosine level, via an astroglial release. Measurements of vasodilatory responses and electrophysiological recordings finally reveal that, in response to PGD2 application, adenosine release induces an A2AR-mediated dilatation of blood vessels and activation of VLPO sleep-promoting neurons. Altogether, our results unravel the PGD2 signaling pathway in the VLPO, controlling local blood flow and sleep-promoting neurons, via astrocyte-derived adenosine.


Asunto(s)
Astrocitos , Prostaglandinas , Astrocitos/metabolismo , Adenosina/metabolismo , Prostaglandina D2/farmacología , Prostaglandina D2/fisiología , Sueño , Neuronas/metabolismo
5.
Bioelectrochemistry ; 148: 108262, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36130462

RESUMEN

Optical fibers have opened avenues for remote imaging, bioanalyses and recently optogenetics. Besides, miniaturized electrochemical sensors have offered new opportunities in sensing directly redox neurotransmitters. The combination of both optical and electrochemical approaches was usually performed on the platform of microscopes or within microsystems. In this work, we developed optoelectrodes which features merge the advantages of both optical fibers and microelectrodes. Optical fiber bundles were modified at one of their extremity by a transparent ITO deposit. The electrochemical responses of these ITO-modified bundles were characterized for the detection of dopamine, epinephrine and norepinephrine. The analytical performances of the optoelectrodes were equivalent to the ones reported for carbon microelectrodes. The remote imaging of model neurosecretory PC12 cells by optoelectrodes was performed upon cell-staining with common fluorescent dyes: acridine orange and calcein-AM. An optoelectrode placed by micromanipulation at a few micrometers-distance from the cells offered remote images with single cell resolution. Finally, in situ electrochemical sensing was demonstrated by additions of K+-secretagogue solutions near PC12 cells under observation, leading to exocytotic events detected as amperometric spikes at the ITO surface. Such dual sensors should pave the way for in vivo remote imaging, optogenetic stimulation, and simultaneous detection of neurosecretory activities.


Asunto(s)
Naranja de Acridina , Dopamina , Animales , Carbono , Dopamina/análisis , Epinefrina , Colorantes Fluorescentes , Microelectrodos , Neurotransmisores , Norepinefrina , Ratas , Secretagogos
6.
Anal Chem ; 94(3): 1686-1696, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34995073

RESUMEN

In this work, the characterization of release events from liposomes has been addressed quantitatively by an electrochemiluminescence (ECL) imaging strategy. First, ECL reagents ([Ru(bpy)3]2+ and tripropylamine) were encapsulated in sealed giant asymmetrical liposomes (100 µm in diameter) made of DOPG/DOPC phospholipids. After sedimentation on an indium tin oxide electrode material, the opening of liposomes was triggered by polarization of the surface. Under these conditions, amperometry, epifluorescence imaging, and ECL imaging were combined and synchronized to monitor and image the rupture of giant liposomes during the release and subsequent ECL emission of their redox content. Amperometry allowed the quantification of the content released from single liposomes. The location and status of liposomes (closed or opened) were assessed by epifluorescence imaging. ECL provided the image of the efflux of matter after liposome opening. This original ECL imaging approach favorably compares with strictly photoluminescent or electrochemical techniques and appears to be adapted for the investigation of membrane rupture/permeation events.


Asunto(s)
Liposomas , Mediciones Luminiscentes , Técnicas Electroquímicas/métodos , Electrodos , Mediciones Luminiscentes/métodos , Fotometría
7.
Anal Bioanal Chem ; 413(27): 6769-6776, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34120197

RESUMEN

Amperometry with ultramicroelectrodes is nowadays a routine technique to investigate neurotransmitter secretion by vesicular exocytosis at the single-cell level. This electroanalytical tool allows one to understand many aspects of the vesicular release in terms of mechanisms. However, the electrochemical detection relies on the oxidation of released neurotransmitters that produce 2H+ and thus the possible acidification of the cell-electrode cleft. In a previous work, we considered a model involving the H+ diffusion or/and its reaction with buffer species. In this article, we report a more general model which takes into account the ability of buffer species to move and to be regenerated within the cell-electrode cleft. As a consequence, the pH within the cleft is still equal to its physiological value regardless of the electrochemical detection of the vesicular release for usual exocytotic cell frequencies. This confirms that amperometry at the single-cell level is a very robust technique for investigating vesicular exocytosis.


Asunto(s)
Técnicas Electroquímicas/métodos , Exocitosis/fisiología , Modelos Biológicos , Tampones (Química) , Membrana Celular/química , Simulación por Computador , Difusión , Técnicas Electroquímicas/instrumentación , Concentración de Iones de Hidrógeno , Protones
8.
Chem Rec ; 21(9): 2193-2202, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33656794

RESUMEN

This short review is aimed at emphasizing the most prominent recent works devoted to the fluorescence modulation of organic fluorescent or fluorogenic molecules by electrochemistry. This still expanding research field not only addresses the smart uses of known molecules or the design of new ones, but also investigates the development of instrumentation providing time- and space-resolved information at the molecular level. Important considerations including fluorescent/fluorogenic probes, reversible/irreversible fluorescence switch, direct/indirect fluorescence modulation, or environment properties are especially scrutinized in recent works dealing with bioanalysis perspectives.

9.
Chempluschem ; 84(10): 1578-1586, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31943921

RESUMEN

A dual electrofluorescent probe (FFN42) belonging to the fluorescent false neurotransmitter family was rationally designed for investigating cell secretion. This probe, which comprises a coumarin core with one amino and two hydroxy groups, is very promising due to its electroactive and fluorescent properties. The optimal excitation and emission wavelengths (380 nm and 470 nm respectively) make this probe adapted for use in fluorescence microscopy. FFN42 has a quantum yield of 0.18, a molar absorption coefficient of 12000 M-1 cm-1 and pKa values of 5.4 and 6.7 for the hydroxy groups. The electroactivity of FFN42 was evidenced on carbon fiber and ITO electrodes at relatively low oxidation potentials (0.24 V and 0.45 V vs Ag/AgCl respectively). Epifluorescence observations showed that FFN42 accumulated into secretory vesicles of PC12 and N13 cells. Toxicity tests further revealed that FFN42 had no lethal effect on these cells. Amperometric data obtained on carbon fiber electrodes proved that the probe is released by N13 cells.


Asunto(s)
Técnicas Electroquímicas/métodos , Colorantes Fluorescentes/química , Modelos Biológicos , Vesículas Secretoras/química , Animales , Línea Celular , Cumarinas/química , Electrodos , Humanos , Microscopía Fluorescente , Neurotransmisores , Células PC12 , Ratas
10.
Biophys Chem ; 245: 1-5, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30500608

RESUMEN

In the last decade, following fluorescent dyes and protein tags, pH sensitive false fluorescent neurotransmitters (FFN) were introduced and were valuable for labeling secretory vesicles and monitoring exocytosis at living cells. In particular, the synthetic analog of neurotransmitters FFN102 was shown to be an electroactive probe. Here, we show that FFN102 is suitable to be used as a bioanalytic probe at the widely used PC12 cell model. FFN102 was uptaken in the secretory vesicles of PC12 cells, partially replacing the endogenous dopamine stored in these vesicles. The different oxidation potentials of dopamine and FFN102 allowed to determine that ca. 12% of dopamine was replaced by FFN102. Moreover, the FFN102 was found to be over released through the initial fusion pore suggesting that it was mostly uptaken in fast diffusion compartment of the vesicles.


Asunto(s)
Dopamina/metabolismo , Colorantes Fluorescentes/metabolismo , Neurotransmisores/metabolismo , Vesículas Secretoras/metabolismo , Animales , Compartimento Celular , Técnicas Electroquímicas/métodos , Electrodos , Exocitosis , Células PC12 , Ratas
11.
Chem Sci ; 9(43): 8271-8281, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30542576

RESUMEN

Plants, algae, and some bacteria convert solar energy into chemical energy by using photosynthesis. In light of the current energy environment, many research strategies try to benefit from photosynthesis in order to generate usable photobioelectricity. Among all the strategies developed for transferring electrons from the photosynthetic chain to an outer collecting electrode, we recently implemented a method on a preparative scale (high surface electrode) based on a Chlamydomonas reinhardtii green algae suspension in the presence of exogenous quinones as redox mediators. While giving rise to an interesting performance (10-60 µA cm-2) in the course of one hour, this device appears to cause a slow decrease of the recorded photocurrent. In this paper, we wish to analyze and understand this gradual fall in performance in order to limit this issue in future applications. We thus first show that this kind of degradation could be related to over-irradiation conditions or side-effects of quinones depending on experimental conditions. We therefore built an empirical model involving a kinetic quenching induced by incubation with quinones, which is globally consistent with the experimental data provided by fluorescence measurements achieved after dark incubation of algae in the presence of quinones.

12.
Anal Chem ; 90(15): 9386-9394, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979582

RESUMEN

An innovative microfluidic platform was designed to monitor electrochemically four primary reactive oxygen (ROS) and reactive nitrogen species (RNS) released by aerobic cells. Taking advantage of the space confinement and electrode performances under flow conditions, only a few experiments were sufficient to directly provide significant statistical data relative to the average behavior of cells during oxidative-stress bursts. The microfluidic platform comprised an upstream microchamber for cell culture and four parallel microchannels located downstream for separately detecting H2O2, ONOO-, NO·, and NO2-. Amperometric measurements were performed at highly sensitive Pt-black electrodes implemented in the microchannels. RAW 264.7 macrophage secretions triggered by a calcium ionophore were used as a way to assess the performance, sensitivity, and specificity of the integrated microfluidic device. In comparison with some previous evaluations achieved from single-cell measurements, reproducible and relevant determinations validated the proof of concept of this microfluidic platform for analyzing statistically significant oxidative-stress responses of various cell types.

13.
Biophys Chem ; 235: 48-55, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477767

RESUMEN

Applications of the Fluorescent False Neurotransmitter FFN102, an analog of biogenic neurotransmitters and a suitable probe for coupled amperometry and TIRFM (total internal reflexion fluorescence microscopy) investigations of exocytotic secretion, were considered here. The electroactivity of FFN102 was shown to very likely arise from the oxidation of its phenolic group through a CE (Chemical-Electrochemical) mechanism. Evidences that the aminoethyl group of FFN102 is the key recognition element by BON N13 cells were also provided. Amperometric measurements were then performed at the single cell level with carbon fiber electrode (CFE) or Indium Tin Oxide (ITO) surfaces. It proved the disparity of kinetic and quantitative parameters of FFN102-stained cells acquired either at cell top and bottom. Moreover, coupled analyses of FFN102 loaded vesicles allowed us to classify three types of optical signals that probably arise from secretion releases thanks to their concomitant detection with an electrochemical spike. Finally, preliminary benefits from the coupling involving FFN102 were reported in terms of origins of overlapped amperometric spikes or assignment of fluorescence extinctions to real exocytotic events.


Asunto(s)
Técnicas Electroquímicas , Exocitosis/fisiología , Fluorescencia , Neurotransmisores/química , Línea Celular Tumoral , Humanos , Microscopía Fluorescente , Estructura Molecular
14.
Chemphyschem ; 18(19): 2643-2650, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28618080

RESUMEN

In the past years, many strategies have been implemented to benefit from oxygenic photosynthesis to harvest photosynthetic electrons and produce a significant photocurrent. Therefore, electrochemical tools were considered and have globally relied on the electron transfer(s) between the photosynthetic chain and a collecting electrode. In this context, we recently reported the implementation of an electrochemical set-up at the preparative scale to produce photocurrents from a Chlamydomonas reinhardtii algae suspension with an appropriate mediator (2,6-DCBQ) and a carbon gauze as the working electrode. In the present work, we wish to describe a mathematical modeling of the recorded photocurrents to better understand the effects of the experimental conditions on the photosynthetic extraction of electrons. In that way, we established a general model of an electrocatalytic mechanism at the preparative scale (that is, assuming a homogenous bulk solution at any time and a constant diffusion layer, both assumptions being valid under forced convection) in which the chemical step involves a Michaelis-Menten-like behaviour. Dependences of transient and steady-state corresponding currents were analysed as a function of different parameters by means of zone diagrams. This model was tested to our experimental data related to photosynthesis. The corresponding results suggest that competitive pathways beyond photosynthetic harvesting alone should be taken into account.

15.
Nat Commun ; 8: 15274, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28466860

RESUMEN

Strategies to harness photosynthesis from living organisms to generate electrical power have long been considered, yet efficiency remains low. Here, we aimed to reroute photosynthetic electron flow in photosynthetic organisms without compromising their phototrophic properties. We show that 2,6-dimethyl-p-benzoquinone (DMBQ) can be used as an electron mediator to assess the efficiency of mutations designed to engineer a novel electron donation pathway downstream of the primary electron acceptor QA of Photosystem (PS) II in the green alga Chlamydomonas reinhardtii. Through the use of structural prediction studies and a screen of site-directed PSII mutants we show that modifying the environment of the QA site increases the reduction rate of DMBQ. Truncating the C-terminus of the PsbT subunit protruding in the stroma provides evidence that shortening the distance between QA and DMBQ leads to sustained electron transfer to DMBQ, as confirmed by chronoamperometry, consistent with a bypass of the natural QA°- to QB pathway.


Asunto(s)
Chlamydomonas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Quinonas/metabolismo , Benzoquinonas/metabolismo , Sitios de Unión , Clorofila/metabolismo , Diurona/farmacología , Transporte de Electrón/efectos de los fármacos , Electrones , Fluorescencia , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Fotosíntesis
16.
Angew Chem Int Ed Engl ; 56(9): 2366-2370, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28117543

RESUMEN

In this work, Fluorescent False Neurotransmitter 102 (FFN102), a synthesized analogue of biogenic neurotransmitters, was demonstrated to show both pH-dependent fluorescence and electroactivity. To study secretory behaviors at the single-vesicle level, FFN102 was employed as a new fluorescent/electroactive dual probe in a coupled technique (amperometry and total internal reflection fluorescence microscopy (TIRFM)). We used N13 cells, a stable clone of BON cells, to specifically accumulate FFN102 into their secretory vesicles, and then optical and electrochemical measurements of vesicular exocytosis were experimentally achieved by using indium tin oxide (ITO) transparent electrodes. Upon stimulation, FFN102 started to diffuse out from the acidic intravesicular microenvironment to the neutral extracellular space, leading to fluorescent emissions and to the electrochemical oxidation signals that were simultaneously collected from the ITO electrode surface. The correlation of fluorescence and amperometric signals resulting from the FFN102 probe allows real-time monitoring of single exocytotic events with both high spatial and temporal resolution. This work opens new possibilities in the investigation of exocytotic mechanisms.


Asunto(s)
Exocitosis , Colorantes Fluorescentes/química , Neurotransmisores/química , Línea Celular , Técnicas Electroquímicas/métodos , Electrodos , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos
17.
Sci Rep ; 6: 19107, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26755200

RESUMEN

Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity.


Asunto(s)
Adenosina/farmacología , Astrocitos/metabolismo , Glucosa/farmacología , Sueño/efectos de los fármacos , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Astrocitos/efectos de los fármacos , Técnicas Biosensibles , Espacio Extracelular/química , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Norepinefrina/farmacología , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología , Receptor de Adenosina A2A , Vasodilatación/efectos de los fármacos
18.
Biophys Chem ; 205: 1-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26051794

RESUMEN

Oxygenic photosynthesis is the complex process that occurs in plants or algae by which the energy from the sun is converted into an electrochemical potential that drives the assimilation of carbon dioxide and the synthesis of carbohydrates. Quinones belong to a family of species commonly found in key processes of the Living, like photosynthesis or respiration, in which they act as electron transporters. This makes this class of molecules a popular candidate for biofuel cell and bioenergy applications insofar as they can be used as cargo to ship electrons to an electrode immersed in the cellular suspension. Nevertheless, such electron carriers are mostly selected empirically. This is why we report on a method involving fluorescence measurements to estimate the ability of seven different quinones to accept photosynthetic electrons downstream of photosystem II, the first protein complex in the light-dependent reactions of oxygenic photosynthesis. To this aim we use a mutant of Chlamydomonas reinhardtii, a unicellular green alga, impaired in electron downstream of photosystem II and assess the ability of quinones to restore electron flow by fluorescence. In this work, we defined and extracted a "derivation parameter" D that indicates the derivation efficiency of the exogenous quinones investigated. D then allows electing 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone and p-phenylbenzoquinone as good candidates. More particularly, our investigations suggested that other key parameters like the partition of quinones between different cellular compartments and their propensity to saturate these various compartments should also be taken into account in the process of selecting exogenous quinones for the purpose of deriving photoelectrons from intact algae.


Asunto(s)
Electrones , Fotosíntesis/efectos de los fármacos , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Transporte de Electrón/efectos de los fármacos , Quinonas/metabolismo , Quinonas/farmacología , Espectrometría de Fluorescencia , Tilacoides/efectos de los fármacos , Tilacoides/metabolismo
19.
Analyst ; 140(11): 3687-95, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25803190

RESUMEN

Among all the analytical techniques capable of monitoring exocytosis in real time at the single cell level, electrochemistry (particularly amperometry at a constant potential) using ultramicroelectrodes has been demonstrated to be an important and convenient tool for more than two decades. Indeed, because the electrochemical sensor is located in the close vicinity of the emitting cell ("artificial synapse" configuration), much data can be gathered from the whole cell activity (secretion frequency) to the individual vesicular release (duration, fluxes or amount of molecules released) with an excellent sensitivity. However, such a single cell analysis and its intrinsic benefits are at the expense of the spatial resolution and/or the number of experiments. The quite recent development of microdevices/microsystems (and mainly the microelectrode arrays (MEAs)) offers in some way a complementary approach either by combining spectroscopy-microscopy or by implementing a multianalysis. Such developments are described and discussed in the present review over the 2005-2014 period.


Asunto(s)
Exocitosis , Microtecnología/instrumentación , Vesículas Secretoras/metabolismo , Electroquímica , Microelectrodos , Análisis de la Célula Individual
20.
ChemMedChem ; 9(6): 1286-93, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24803138

RESUMEN

Ferrocifens are an original class of ferrocifen-type breast cancer drugs. They possess anti-proliferative effects due to the association of the ferrocene moiety and the tamoxifen skeleton. In this work, fluorescence measurements indicated the production of reactive oxygen species (ROS) if hormone-dependent or -independent breast cancer cells were incubated with three hit ferrocifen compounds. Additionally, amperometry at ultramicroelectrodes was carried out to identify and quantify ROS and reactive nitrogen species (RNS) under stress conditions. Videomicroscopy was used to optimize the conditions employed for electrochemical investigations. Amperometry was then performed on two cell lines pre-incubated with each of the three ferrocifens. Interestingly, these results demonstrate that the presence of an aminoalkyl chain in the ferrocifen structure may confer a unique behavior toward both cell lines, in comparison with the two other compounds that lack this feature.


Asunto(s)
Compuestos Ferrosos/química , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas , Electrodos , Femenino , Compuestos Ferrosos/toxicidad , Humanos , Células MCF-7 , Microscopía por Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...