Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(50): 21017-21031, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33186011

RESUMEN

Columnar polymers and liquid crystals obtained from π-conjugated cone-shaped molecules are receiving increasing interest due to the possibility of obtaining unconventional polar organizations that show anisotropic charge transport and unique chiroptical properties. However, and in contrast to the more common planar discotics, the self-assembly of conic or pyramidic molecules in solution remains largely unexplored. Here, we show how a molecular geometry change, from flat to conic, can generate supramolecular landscapes where different self-assembled species, each of them being under thermodynamic equilibrium with the monomer, exist exclusively within distinct regimes. In particular, depending on the solvent nature-aromatic or aliphatic-cone-shaped C3-symmetric subphthalocyanine 1 can undergo self-assembly either as a tail-to-tail dimer, showing monomer-dimer sigmoidal transitions, or as a head-to-tail noncentrosymmetric columnar polymer, exhibiting a nucleation-elongation polymerization mechanism. Moreover, the experimental and theoretical comparison between racemic and enantiopure samples revealed that the two enantiomers (1M and 1P) tend to narcissistically self-sort in the dimer regime, each enantiomer showing a strong preference to associate with itself, but socially self-sort in the polymer regime, favoring an alternate stacking order along the columns.

2.
Chem Sci ; 10(48): 10997-11005, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-32055388

RESUMEN

Two subphthalocyanines (SubPcs) decorated at their peripheral (SubPc 1) or peripheral and axial (SubPc 2) positions with tetracyanobuta-1,3-diene (TCBD)-aniline moieties have been prepared as novel electron donor-acceptor (D-A) conjugates. In 1 and 2, the multiple functionalization of C 3-symmetric SubPcs by TCBD moieties, each of them having a chiral axis, results in the formation of several stereoisomers. Variable temperature 1H-NMR studies in chlorinated solvents suggest that these latter species, which are detected at low temperatures, rapidly interconvert - on the NMR timescale - into each other at room temperature. Beside their unique structural and stereochemical features, 1 and 2 present interesting physicochemical properties. Steady-state absorption and fluorescence, as well as electrochemical studies on 1 and 2 clearly point to an important degree of electronic communication between the SubPc, the TCBD and the aniline subunits. Moreover, in both derivatives, photoexcitation of the SubPc moiety yields charge transfer products involving the electron-rich SubPc moiety and the electron-withdrawing TCBD fragment. Interestingly, such polarized excited state species evolve in 1 and 2 in different ways. While in the former compound, it directly decays to the ground state, the fourth axial TCBD moiety in 2 leads to the formation of an intermediate fully charge separated state prior to the ground state deactivation.

3.
J Am Chem Soc ; 140(49): 16952-16956, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30465601

RESUMEN

Two differently protected aldehydes, A and B, were demonstrated to deprotect selectively through the application of light and heat, respectively. In the presence of iron(II) and a triamine, two distinct FeII4L4 cages, 1 and 2, were thus observed to form from the deprotected A and B, respectively. The alkyl tails of B and 2 render them preferentially soluble in cyclopentane, whereas A and 1 remain in acetonitrile. The stimulus applied (either light or heat) thus determines the outcome of self-assembly and dictates whether the cage and its ferrocene cargo remain in acetonitrile, or transport into cyclopentane. Cage self-assembly and cargo transport between phases can in this fashion be programmed using orthogonal stimuli.

4.
Sci Adv ; 3(9): e1701017, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28975150

RESUMEN

Advanced molecular materials that combine two or more physical properties are typically constructed by combining different molecules, each being responsible for one of the properties required. Ideally, single molecules could take care of this combined functionality, provided they are self-assembled correctly and endowed with different functional subunits whose strong electronic coupling may lead to the emergence of unprecedented and exciting properties. We present a class of disc-like semiconducting organic molecules that are functionalized with strong dipolar side groups. Supramolecular organization of these materials provides long-range polar order that supports collective ferroelectric behavior of the side groups as well as charge transport through the stacked semiconducting cores. The ferroelectric polarization in these supramolecular polymers is found to couple to the charge transport and leads to a bulk conductivity that is both switchable and rectifying. An intuitive model is developed and found to quantitatively reproduce the experimental observations. In a larger perspective, these results highlight the possibility of modulating material properties using the large electric fields associated with ferroelectric polarization.

5.
J Am Chem Soc ; 139(15): 5520-5529, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28322560

RESUMEN

A 1,1,4,4-tetracyanobuta-1,3-diene (TCBD)-aniline moiety has been introduced, for the first time, at the axial position of two subphthalocyanines (SubPcs) peripherally substituted with hydrogen (H12SubPc) or fluorine atoms (F12SubPc). Single-crystal X-ray analysis of both SubPc-TCBD-aniline systems showed that each conjugate is a racemic mixture of two atropisomers resulting from the almost orthogonal geometry adopted by the axial TCBD unit, which were separated by chiral high-performance liquid chromatography. Remarkably, the single-crystal X-ray structure of one atropisomer of each SubPc-TCBD-aniline conjugate has been solved, allowing to unambiguously assign the atropisomers' absolute configuration, something, to the best of our knowledge, unprecedented in TCBD-based conjugates. Moreover, the physicochemical properties of both SubPc-TCBD-aniline racemates have been investigated using a wide range of electrochemical as well as steady-state and time-resolved spectroscopic techniques. Each of the two SubPc-TCBD-aniline conjugates presents a unique photophysical feature never observed before in SubPc chemistry. As a matter of fact, H12SubPc-TCBD-aniline showed significant ground-state charge transfer interactions between the H12SubPc macrocycle and the electron-withdrawing TCBD unit directly attached at its axial position. In contrast, F12SubPc-TCBD-aniline gave rise to an intense, broad emission, which red shifts upon increasing the solvent polarity and stems from an excited complex (i.e., an exciplex). Such an exciplex emission, which has also no precedent in TCBD chemistry, results from intramolecular interactions in the excited state between the electron-rich aniline and the F12SubPc π-surface, two molecular fragments kept in spatial proximity by the "unique" three-dimensional geometry adopted by the F12SubPc-TCBD-aniline. Complementary transient absorption studies were carried out on both SubPc-TCBD-aniline derivatives, showing the occurrence, in both cases, of photoinduced charge separation and corroborating the formation of the aforementioned intramolecular exciplex in terms of a radical ion pair stabilized through-space.

6.
Org Lett ; 17(19): 4722-5, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26371719

RESUMEN

A new synthetic one-step approach to perform the axial ligand exchange reaction in subphthalocyanines that employs trimethylsilyl-protected nucleophiles as starting materials is reported. Theoretical calculations indicate that the exchange reaction proceeds through a similar 4-centered σ-bond metathesis transition state as the substitution with phenols. This direct method allowed us to synthesize new axial derivatives of singular importance within the chemistry of subphthalocyanines, for which the reactivity and X-ray crystalline structure were studied.

7.
Adv Mater ; 27(29): 4280-4, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26078047

RESUMEN

A polar response in a lyotropic columnar nematic material is reported. The material accommodates bowl-shaped molecules with strong axial dipole moments in column segments without head-to-tail invariance. Optical second-harmonic-generation methods confirm that the nematic columns align unidirectionally under an applied electric field and the material develops remnant macroscopic polarization observable for hours. The switching takes place by a flip of the columns.

8.
Angew Chem Int Ed Engl ; 54(8): 2543-7, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25597927

RESUMEN

A combination of spectroscopy (UV/Vis absorption, emission, and circular dichroism), microscopy (AFM and TEM), and computational studies reveal the formation of non-centrosymmetric homochiral columnar subphthalocyanine assemblies. These assemblies form through a cooperative supramolecular polymerization process driven by hydrogen-bonding between amide groups, π-π stacking, and dipolar interactions between axial B-F bonds.

9.
J Am Chem Soc ; 136(40): 14289-98, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25211231

RESUMEN

We provide here an insight into the mechanism of the axial ligand exchange reaction between chlorosubphthalocyanines and phenols. Our combined experimental and theoretical results support a bimolecular σ-bond metathesis mechanism in which the phenolic proton assists in weakening the boron-halogen bond concomitantly with substitution at the boron center. Such a reaction pathway, which is unusual in boron chemistry, is a consequence of the crowded and rigid chemical environment of the boron atom in these macrocycles. Furthermore, this work sheds light on the influence of different experimental parameters on the kinetics and efficiency of the most important reaction in subphthalocyanine chemistry.

10.
Org Lett ; 14(22): 5656-9, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23101729

RESUMEN

We have prepared two different subphthalocyanine conjugates by linking these macrocycles either to an electron-accepting perylene diimide or to an electron-donating phenothiazine through a single B-N covalent bond. The short spacing between the two active building blocks results in ultrafast photoinduced electron-transfer reactions.


Asunto(s)
Compuestos Macrocíclicos/química , Fenotiazinas/química , Imidas , Conformación Molecular , Estructura Molecular , Perileno/análogos & derivados , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...