Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 177(1-2): 69-77, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036475

RESUMEN

Exposure to radon is a well-established cause of lung cancer in the general population. The aim of the present work is to identify and summarize the results of studies that have assessed the risk of lung cancer due to indoor radon, based on a systematic review of relevant published studies. Sixteen studies from 12 different countries met eligibility criteria. Large differences in radon concentrations were noted between and within individual countries, and variety of risk models used to estimate the attributable fraction. Calculating again the attributable fraction in each of these studies using the same model (coefficient of 16% per 100 becquerels per cubic meter (Bq/m3) derived from the European residential radon study), the new attributable fraction of these selected studies ranged from 3% to 17%. Radon remains a public health concern. Information about radon health risks is important and efforts are needed to decrease the associated health problems.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Pulmonares/etiología , Neoplasias Inducidas por Radiación/etiología , Radón/análisis , Medición de Riesgo , Exposición a Riesgos Ambientales/análisis , Vivienda , Humanos , Factores de Riesgo
2.
J Environ Radioact ; 139: 140-148, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25464050

RESUMEN

Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this information, which is exhaustive throughout France, could help in estimating the telluric gamma dose rates. Such an approach is possible using multivariate geostatistics and cokriging. Multi-collocated cokriging has been performed on 1*1 km(2) cells over the domain. This model used gamma dose rate measurement results and GUP classes. Our results provide useful information on the variability of the natural terrestrial gamma radiation in France ('natural background') and exposure data for epidemiological studies and risk assessment from low dose chronic exposures.


Asunto(s)
Rayos gamma , Monitoreo de Radiación/métodos , Francia
3.
J Environ Radioact ; 126: 216-25, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056050

RESUMEN

Radon-222 is a radioactive natural gas produced by the decay of radium-226, known to be the main contributor to natural background radiation exposure. Effective risk management needs to determine the areas in which the density of buildings with high radon levels is likely to be highest. Predicting radon exposure from the location and characteristics of a dwelling could also contribute to epidemiological studies. Beginning in the nineteen-eighties, a national radon survey consisting in more than 10,000 measurements of indoor radon concentrations was conducted in French dwellings by the Institute for Radiological Protection and Nuclear Safety (IRSN). Housing characteristics, which may influence radon accumulation in dwellings, were also collected. More recently, the IRSN generated a French geogenic radon potential map based on the interpretation of geological features. The present study analyzed the two datasets to investigate the factors influencing indoor radon concentrations using statistical modeling and to determine the optimum use of the information on geogenic radon potential that showed the best statistical association with indoor radon concentration. The results showed that the variables associated with indoor radon concentrations were geogenic radon potential, building material, year of construction, foundation type, building type and floor level. The model, which included the surrounding geogenic radon potential (i.e. the average geogenic radon potential within a disc of radius 20 km centered on the indoor radon measurement point) and variables describing house-specific factors and lifestyle explained about 20% of the overall variability of the logarithm of radon concentration. The surrounding geogenic radon potential was fairly closely associated with the local average indoor radon concentration. The prevalence of exposure to radon above specific thresholds and the average exposures to radon clearly increased with increasing classes of geogenic radon potential. Combining the two datasets enabled improved assessment of radon exposure in a given area in France.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Vivienda , Radón/análisis , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...