Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Eur J Pharm Sci ; 151: 105382, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470575

RESUMEN

Malaria treatment is based on a reduced number of antimalarial drugs, and drug resistance has emerged, leading to the search for new antimalarial drugs incorporated into pharmaceutical formulations. In this study, 10-(4,5-dihydrothiazol-2-yl)thio)decan-1-ol) (thiazoline), a synthetic analog of 3-alkylpiridine marine alkaloid, and a potent antimalarial substance, was incorporated into O/W nanoemulsion. This formulation was prepared by a 23 factorial design. It was characterized by globule diameter, polydispersity index, zeta potential, encapsulation efficiency, in vitro thiazoline release at pH 2 and 6.86, and accelerated stability. In vitro and in vivo antimalarial activity was determined against P. falciparum and P. berghei, respectively. Thiazoline nanoemulsion showed 248.8 nm of globule diameter, 0.236 of polydispersity index, -38.5 mV of zeta potential, 96.92% encapsulation efficiency, and it was stable for 6 months. Thiazoline release profiles differed in acidic and neutral media, but in both cases, the nanoemulsion controlled and prolonged the thiazoline delivery. Thiazoline nanoemulsion exerted in vitro antimalarial activity against the parasite (IC50 = 1.32 µM), and it significantly reduced the in vivo parasitemia for 8 days without increasing the survival time of animals. Therefore, the thiazoline nanoemulsion represents a strategy to treat malaria combining an antimalarial candidate and a new nanocarrier.


Asunto(s)
Alcaloides , Antimaláricos , Malaria , Alcaloides/farmacología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium berghei , Plasmodium falciparum
2.
Eur J Pharm Sci ; 138: 105015, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31344442

RESUMEN

The development of new antimalarial drugs is urgent to overcome the spread of resistance to the current treatment. Herein we synthesized the compound 3, a hit-to­lead optimization of a thiazole based on the most promising 3-alkylpyridine marine alkaloid analog. Compound 3 was tested against Plasmodium falciparum and has shown to be more potent than its precursor (IC50 values of 1.55 and 14.7 µM, respectively), with higher selectivity index (74.7) for noncancerous human cell line. This compound was not mutagenic and showed genotoxicity only at concentrations four-fold higher than its IC50. Compound 3 was tested in vivo against Plasmodium berghei NK65 strain and inhibited the development of parasite at 50 mg/kg. In silico and UV-vis approaches determined that compound 3 acts impairing hemozoin crystallization and confocal microscopy experiments corroborate these findings as the compound was capable of diminishing food vacuole acidity. The assay of uptake using human intestinal Caco-2 cell line showed that compound 3 is absorbed similarly to chloroquine, a standard antimalarial agent. Therefore, we present here compound 3 as a potent new lead antimalarial compound.


Asunto(s)
Alcaloides/química , Antimaláricos/farmacología , Mutágenos/farmacología , Permeabilidad/efectos de los fármacos , Piridinas/química , Tiazoles/química , Animales , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Cloroquina/farmacología , Femenino , Hemoproteínas/química , Humanos , Malaria/tratamiento farmacológico , Ratones , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
3.
ACS Omega ; 2(11): 8264-8272, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023579

RESUMEN

The need to develop new alternatives for antimalarial treatment is urgent. Herein, we report the synthesis and antimalarial evaluation of a small library of synthetic 3-alkylpyridine marine alkaloid (3-APA) analogs. First, the compounds were evaluated in vitro against Plasmodium falciparum. The most active compound 5c was selected for optimization of its antimalarial properties. An in silico approach was used based on pure ab initio electronic structure prediction, and the results indicated that a substitution of the hydroxyl group by a fluorine atom could favor a more stable complex with heme at a molecular ratio of 2:1 (heme/3-APA halogenated). A new fluorinated 3-APA analog was synthesized (compound 7), and its antimalarial activity was re-evaluated. Compound 7 exhibited optimized antimalarial properties (P. falciparum IC50 = 2.5 µM), low genotoxicity, capacity to form a more stable heme/3-APA complex at a molecular ratio of 2:1, and conformity to RO5. The new compound, therefore, has great potential as a new lead antimalarial agent.

4.
Mem Inst Oswaldo Cruz ; 110(2): 255-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25946251

RESUMEN

Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosa were tested in silico against the Plasmodium falciparum Ca2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Diterpenos de Tipo Kaurano/uso terapéutico , Diseño de Fármacos , Plasmodium falciparum/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Wedelia/química , Antimaláricos/metabolismo , Artemisininas/metabolismo , Calcio/metabolismo , Diterpenos de Tipo Kaurano/síntesis química , Diterpenos de Tipo Kaurano/farmacología , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Tapsigargina/farmacología , Wedelia/clasificación
5.
Mem. Inst. Oswaldo Cruz ; 110(2): 255-258, 04/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-744477

RESUMEN

Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosa were tested in silico against the Plasmodium falciparum Ca2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.


Asunto(s)
Anciano , Femenino , Humanos , Masculino , Neoplasias Gastrointestinales/fisiopatología , Promoción de la Salud/organización & administración , Sobrevivientes , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...