Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38691149

RESUMEN

RATIONALE: Therapeutic approaches to mitigating traumatic memories have often faced resistance. Exploring safe reconsolidation blockers, drugs capable of reducing the emotional valence of the memory upon brief retrieval and reactivation, emerges as a promising pharmacological strategy. Towards this objective, preclinical investigations should focus on aversive memories resulting in maladaptive outcomes and consider sex-related differences to enhance their translatability. OBJECTIVES: After selecting a relatively high training magnitude leading to the formation of a more intense and generalized fear memory in adult female and male rats, we investigated whether two clinically approved drugs disrupting its reconsolidation remain effective. RESULTS: We found resistant reconsolidation impairment by the α2-adrenergic receptor agonist clonidine or cannabidiol, a major non-psychotomimetic Cannabis sativa component. However, pre-retrieval administration of D-cycloserine, a partial agonist at the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor complex, facilitated their impairing effects on reconsolidation. A similar reconsolidation blockade by clonidine or cannabidiol was achieved following exposure to a non-conditioned but generalized context after D-cycloserine administration. This suggests that sufficient memory destabilization can accompany generalized fear expression. Combining clonidine with cannabidiol without potentiating memory destabilization by D-cycloserine was ineffective. CONCLUSIONS: These findings highlight the importance of NMDA receptor signaling in memory destabilization and underscore the efficacy of a dual-step pharmacological intervention in attenuating traumatic-like memories, even in a context different from the original learning environment.

2.
Pain ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38661577

RESUMEN

ABSTRACT: The rostral ventromedial medulla (RVM) is a crucial structure in the descending pain modulatory system, playing a key role as a relay for both the facilitation and inhibition of pain. The chronic social defeat stress (CSDS) model has been widely used to study stress-induced behavioral impairments associated with depression in rodents. Several studies suggest that CSDS also causes changes related to chronic pain. In this study, we aimed to investigate the involvement of the RVM in CSDS-induced behavioral impairments, including those associated with chronic pain. We used chemogenetics to activate or inhibit the RVM during stress. The results indicated that the RVM is a vital hub influencing stress outcomes. Rostral ventromedial medulla activation during CSDS ameliorates all the stress outcomes, including social avoidance, allodynia, hyperalgesia, anhedonia, and behavioral despair. In addition, RVM inhibition in animals exposed to a subthreshold social defeat stress protocol induces a susceptible phenotype, facilitating all stress outcomes. Finally, chronic RVM inhibition-without any social stress stimulus-induces chronic pain but not depressive-like behaviors. Our findings provide insights into the comorbidity between chronic pain and depression by indicating the involvement of the RVM in establishing social stress-induced behavioral responses associated with both chronic pain and depression.

3.
Cureus ; 16(1): e53231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38425629

RESUMEN

The prevalence of adrenal incidentalomas (i.e., incidental findings) has grown in recent years with the evolution of imaging methods. Adrenal masses can be benign or malignant. Malignant ones are less frequent, but the detection of primary adrenal neoplasms is even less frequent, especially in the case of a diffuse large B-cell lymphoma (DLBCL). This case concerns a 68-year-old man who presented to the emergency department due to fatigue and anorexia. Given his blood test results on admission, he underwent a computed tomography (CT) with angiography that identified a mass in the left adrenal gland with displacement of the ipsilateral kidney. Left tumorectomy, adrenalectomy, and nephrectomy were performed, and the mass corresponded to a nongerminal center-type DLBCL. This case highlights the importance of prompt diagnosis and surgical and pharmacologic treatment of DLBCL.

4.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554815

RESUMEN

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Capsaicina/análogos & derivados , Discinesia Inducida por Medicamentos , Levodopa , Ratas , Ratones , Animales , Levodopa/uso terapéutico , Antiparkinsonianos/farmacología , Ratas Sprague-Dawley , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Ratones Endogámicos C57BL , Cuerpo Estriado , Oxidopamina/farmacología , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad
5.
Artículo en Inglés | MEDLINE | ID: mdl-38508408

RESUMEN

Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.


Asunto(s)
Cannabidiol , Neuralgia , Neuralgia del Trigémino , Animales , Masculino , Ratas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Dolor Facial/metabolismo , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Ratas Wistar , Neuralgia del Trigémino/complicaciones , Neuralgia del Trigémino/tratamiento farmacológico
6.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428514

RESUMEN

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Asunto(s)
Analgésicos , Cannabidiol , Fosfatidilinositol 3-Quinasa Clase Ib , Canales KATP , Neuralgia , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico , Transducción de Señal , Animales , Cannabidiol/farmacología , Canales KATP/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratones , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Analgésicos/farmacología , Analgesia
7.
Schizophr Bull ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525594

RESUMEN

BACKGROUND AND HYPOTHESIS: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN: After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS: Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS: Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.

8.
Neuropharmacology ; 248: 109870, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401791

RESUMEN

Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.


Asunto(s)
Cannabidiol , Depresión , Ratas , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Cannabidiol/farmacología , Endocannabinoides/metabolismo , Sinaptofisina/metabolismo , Antidepresivos/farmacología , Corteza Prefrontal , Plasticidad Neuronal , Modelos Animales de Enfermedad
9.
Schizophr Bull ; 50(1): 210-223, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584417

RESUMEN

BACKGROUND: Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN: We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS: Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION: Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.


Asunto(s)
Esquizofrenia , Humanos , Ratones , Masculino , Femenino , Animales , Esquizofrenia/genética , Parvalbúminas/metabolismo , Modelos Animales de Enfermedad , Interneuronas/metabolismo , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo
10.
Glia ; 72(3): 529-545, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38013496

RESUMEN

To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1ß in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 µM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.


Asunto(s)
Compuestos Bicíclicos con Puentes , Cannabidiol/análogos & derivados , Cannabinoides , Microglía , Ratones , Animales , Astrocitos , Lipopolisacáridos/toxicidad , Cannabinoides/farmacología , Encéfalo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
11.
Can J Psychiatry ; 69(4): 242-251, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37920963

RESUMEN

OBJECTIVE: The treatment of bipolar depression remains challenging due to the limited effective and safe therapeutic options available; thus, developing newer treatments that are effective and well tolerable is an urgent unmet need. The objective of the present trial was to test 150 to 300 mg/day of cannabidiol as an adjunctive treatment for bipolar depression. METHOD: A randomized, double-blind, placebo-controlled pilot study to assess the efficacy of adjunctive cannabidiol in bipolar depression was used. Efficacy parameters were changes in the Montgomery-Åsberg Depression Rating Scale (MADRS) from baseline to week 8. Secondary outcomes included response and remission rates, changes in anxiety and psychotic symptoms, and changes in functioning. Patients continued double-blind treatment until week 12 to monitor for adverse effects, laboratory analysis, and manic symptoms. Study registry: NCT03310593. RESULTS: A total of 35 participants were included. MADRS scores significantly decreased from baseline to the endpoint (placebo, -14.56; cannabidiol, -15.38), but there was no significant difference between the groups. Similarly, there were no other significant effects on the secondary outcomes. However, an exploratory analysis showed a significant effect of cannabidiol 300 mg/day in reducing MADRS scores from week 2 to week 8 (placebo, -6.64; cannabidiol, -13.72). There were no significant differences in the development of manic symptoms or any other adverse effects. CONCLUSION: Cannabidiol did not show significantly higher adverse effects than placebo. Despite the negative finding on the primary outcome, an exploratory analysis suggested that cannabidiol should be further studied in bipolar depression in higher doses of at least 300 mg/day and under research designs that could better control for high placebo response.


Asunto(s)
Trastorno Bipolar , Cannabidiol , Trastornos Psicóticos , Humanos , Trastorno Bipolar/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Proyectos Piloto , Depresión , Trastornos Psicóticos/tratamiento farmacológico , Método Doble Ciego , Resultado del Tratamiento
12.
Behav Brain Res ; 458: 114764, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-37972712

RESUMEN

Doxycycline is an antibiotic that has shown neuroprotective, anti-inflammatory, and antidepressant-like effects. Low doses of doxycycline revert the behavioral and neuroinflammatory responses induced by lipopolysaccharide treatment in a mice model of depression. However, the molecular mechanisms involved in the antidepressant action of doxycycline are not yet understood. Doxycycline inhibits the synthesis of nitric oxide (NO), which increases after stress exposure. Inducible NO synthase (iNOS) inhibition also causes antidepressant-like effects in animal models sensitive to antidepressant-like effects such as the forced swimming test (FST). However, no direct study has yet investigated if the antidepressant-like effects of doxycycline could involve changes in NO-mediated neurotransmission. Therefore, this study aimed at investigating: i) the behavioral effects induced by doxycycline alone or in association with ineffective doses of a NO donor (sodium nitroprusside, SNP) or an iNOS inhibitor (1400 W) in mice subjected to the FST; and ii) doxycycline effects in NO metabolite levels in the prefrontal cortex and hippocampus these animals. Male mice (8 weeks) received i.p. injection of saline or doxycycline (10, 30, and 50 mg/kg), alone or combined with SNP (0.1, 0.5, and 1 mg/kg) or 1400 W (1, 3, and 10 µg/kg), and 30 min later were submitted to the FST. Animals were sacrificed immediately after, and NO metabolites nitrate/nitrite (NOx) were measured in the prefrontal cortex and hippocampus. Doxycycline (50 mg/kg) reduced both the immobility time in the FST and NOx levels in the prefrontal cortex of mice compared to the saline group. The antidepressant-like effect of doxycycline in the FST was prevented by SNP (1 mg/kg) pretreatment. Additionally, sub-effective doses of doxycycline (30 mg/kg) associated with 1400 W (1 µg/kg) induced an antidepressant-like effect in the FST. Altogether, our data suggest that the reducing NO levels in the prefrontal cortex through inhibition of iNOS could be related to acute doxycycline treatment resulting in rapid antidepressant-like effects in mice.


Asunto(s)
Doxiciclina , Óxido Nítrico , Masculino , Ratones , Animales , Óxido Nítrico/metabolismo , Doxiciclina/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Antidepresivos/uso terapéutico , Natación , Corteza Prefrontal/metabolismo
13.
Neurosci Lett ; 818: 137519, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852528

RESUMEN

Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.


Asunto(s)
Ansiolíticos , Ratones , Masculino , Animales , Ansiolíticos/farmacología , Sirolimus , Ratones Endogámicos C57BL , Endocannabinoides/farmacología , Serina-Treonina Quinasas TOR , Amidohidrolasas , Receptor Cannabinoide CB1
14.
Transl Psychiatry ; 13(1): 351, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978166

RESUMEN

Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses. Mitochondrial features in certain brain regions account for behavioral differences in adulthood. However, it remains unclear whether distinct adolescent behavioral phenotypes and the behavioral consequences of early adolescent stress exposure in rats are accompanied by changes in PFC mitochondria-related genes and mitochondria respiratory chain capacity. We performed a behavioral characterization during late adolescence (postnatal day, PND 47-50), including naïve animals and a group exposed to stress from PND 31-40 (10 days of footshock and 3 restraint sessions) by z-normalized data from three behavioral domains: anxiety (light-dark box tests), sociability (social interaction test) and cognition (novel-object recognition test). Employing principal component analysis, we identified three clusters: naïve with higher-behavioral z-score (HBZ), naïve with lower-behavioral z-score (LBZ), and stressed animals. Genome-wide transcriptional profiling unveiled differences in the expression of mitochondria-related genes in both naïve LBZ and stressed animals compared to naïve HBZ. Genes encoding subunits of oxidative phosphorylation complexes were significantly down-regulated in both naïve LBZ and stressed animals and positively correlated with behavioral z-score of phenotypes. Our network topology analysis of mitochondria-associated genes found Ndufa10 and Cox6a1 genes as central identifiers for naïve LBZ and stressed animals, respectively. Through high-resolution respirometry analysis, we found that both naïve LBZ and stressed animals exhibited a reduced prefrontal phosphorylation capacity and redox dysregulation. Our findings identify an association between mitochondrial features and distinct adolescent behavioral phenotypes while also underscoring the detrimental functional consequences of adolescent stress on the PFC.


Asunto(s)
Estrés Psicológico , Transcriptoma , Ratas , Animales , Estrés Psicológico/metabolismo , Ansiedad/genética , Corteza Prefrontal/metabolismo , Fenotipo , Mitocondrias/genética
15.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662217

RESUMEN

Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37535820

RESUMEN

Background: The concept of an "entourage" effect in the cannabis and cannabinoids' field was first introduced in the late 1990s, during a period when most research on medical cannabinoids focused on the effects of isolated cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabinol. Over the past decade, however, with the increased understanding of the endocannabinoid system, the discovery of other phytocannabinoids and their potential therapeutic uses, the term has gained widespread use in scientific reviews and marketing campaigns. Objective: Critically review the application of the term "entourage effect (EE)" in the literature and its endorsement by certain sectors of the cannabis market. Also, explore the perspectives for further interpretation and elaboration of the term based on current evidence, aiming to contribute to a more nuanced understanding of the concept and its implications for cannabinoid-based medicine. Methods: A comprehensive review of the literature was conducted to evaluate the current state of knowledge regarding the entourage effect. Relevant studies and scientific reviews were analyzed to assess the evidence of clinical efficacy and safety, as well as the regulation of cannabinoid-containing product production. Results: The EE is now recognized as a synergistic phenomenon in which multiple components of cannabis interact to modulate the therapeutic actions of the plant. However, the literature provides limited evidence to support it as a stable and predictable phenomenon. Hence, there is also limited evidence to support clinical efficacy, safety, and appropriate regulation for cannabinoid-containing products based on a "entourage" hypothesis. Conclusion: The EE has significant implications for the medical use of cannabinoid-containing products and their prescription. Nevertheless, a critical evaluation of the term's application is necessary. Further research and evidence are needed to establish the clinical efficacy, safety, and regulatory framework for these products. It's crucial that regulators, the pharmaceutical industry, the media, and health care providers exercise caution and avoid prematurely promoting the entourage effect hypothesis as a scientific proven phenomenon for cannabinoids and other cannabis-derived compound combinations.

17.
Gut Microbes ; 15(1): 2226282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37400971

RESUMEN

Recent evidence has suggested that changes in maternal gut microbiota in early life may generate neurobiological consequences associated with psychiatric-related abnormalities. However, the number of studies on humans investigating this problem is limited, and preclinical findings sometimes conflict. Therefore, we run a meta-analysis to examine whether maternal microbiota disturbance (MMD) during neurodevelopment might affect the offspring during adulthood. We found thirteen studies, from a set of 459 records selected by strategy registered on PROSPERO (#289224), to target preclinical studies that evaluated the behavioral outcomes of the rodents generated by dams submitted to perinatal enteric microbiota perturbation. The analysis revealed a significant effect size (SMD = -0.51, 95% CI = -0.79 to -0.22, p < .001, T2 = 0.54, I2 = 79.85%), indicating that MMD might provoke behavioral impairments in the adult offspring. The MMD also induces a significant effect size for the reduction of the sociability behavior (SMD = -0.63, 95% CI = -1.18 to -0.07, p = 0.011, T2 = 0.30, I2 = 76.11%) and obsessive-compulsive-like behavior (SMD = -0.68, 95% CI = -0.01 to -1.36, p = 0.009, T2 = 0.25, I2 = 62.82%) parameters. The effect size was not significant or inconclusive for memory and anxiety-like behavior, or inconclusive for schizophrenia-like and depressive-like behavior. Therefore, experimental perinatal MMD is vertically transmitted to the offspring, negatively impacting behavioral parameters related to psychiatric disorders.


Asunto(s)
Microbioma Gastrointestinal , Trastornos Mentales , Microbiota , Femenino , Adulto , Embarazo , Humanos , Ansiedad
18.
Cureus ; 15(5): e38394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265889

RESUMEN

Introduction This study aimed to evaluate preoperative radiological assessments of the retrolabyrinthine approach to identify and describe anatomical constraints that may anticipate a more challenging situation for neurosurgeons and otolaryngologists specialized in skull base surgery. Materials and methods The study included 75 adult patients who underwent high-resolution computed tomography angiography scans of the head, with the aim of analyzing the side of the dominance of the sigmoid sinus (SS), the level of pneumatization of the mastoid portion of the temporal bone, and the height of the jugular bulb. Results The results showed that dominant SS and type 2 jugular bulbs were more common on the right side, while smaller type 1 bulbs were significantly more common on the left. Conclusions These findings provide valuable information for neurosurgeons and otolaryngologists in predicting the difficulty of the retrolabyrinthine approach based on preoperative radiological assessments.

19.
Behav Pharmacol ; 34(4): 213-224, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171460

RESUMEN

Cannabidiol is a phytocannabinoid that lacks the psychotomimetic properties of Δ9-tetrahydrocannabinol (THC), the main psychoactive Cannabis sativa component. Cannabidiol has several potential therapeutic properties, including anxiolytic, antidepressant, and antipsychotic; however, cannabidiol has low oral bioavailability, which can limit its clinical use. Here, we investigated if two cannabidiol analogs, HU-502 and HU-556, would be more potent than cannabidiol in behavioral tests predictive of anxiolytic, antidepressant, and antipsychotic effects. Different doses (0.01-3 mg/kg; intraperitoneally) of HU-556 and HU-502 were tested in male Swiss mice submitted to the elevated plus maze (EPM), forced swimming test (FST), and amphetamine-induced-prepulse inhibition (PPI) disruption and hyperlocomotion. Cannabidiol is effective in these tests at a dose range of 15-60 mg/kg in mice. We also investigated if higher doses of HU-556 (3 and 10 mg/kg) and HU-502 (10 mg/kg) produced the cannabinoid tetrad (hypolocomotion, catalepsy, hypothermia, and analgesia), which is induced by THC-like compounds. HU-556 (0.1 and 1 mg/kg) increased the percentage of open arm entries (but not time) in the EPM, decreased immobility time in the FST, and attenuated amphetamine-induced PPI disruption. HU-502 (1 and 3 mg/kg) decreased amphetamine-induced hyperlocomotion and PPI impairment. HU-556, at high doses, caused catalepsy and hypolocomotion, while HU-502 did not. These findings suggest that similar to cannabidiol, HU-556 could induce anxiolytic, antidepressant, and antipsychotic-like effects and that HU-502 has antipsychotic properties. These effects were found at a dose range devoid of cannabinoid tetrad effects.


Asunto(s)
Ansiolíticos , Antipsicóticos , Cannabidiol , Cannabinoides , Ratones , Masculino , Animales , Cannabidiol/farmacología , Antipsicóticos/farmacología , Ansiolíticos/farmacología , Catalepsia/inducido químicamente , Antidepresivos/farmacología , Anfetamina , Dronabinol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...