Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Neuroimmunol ; 373: 577974, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36270078

RESUMEN

Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1ß, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-ß. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Ratones , Animales , Modelos Teóricos
2.
J Neuroimmunol, v. 373, 577974, dez. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4709

RESUMEN

Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.

3.
J Neuroimmunol, v. 373, 577974, out. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4694

RESUMEN

Rabies virus (RABV) is a neurotropic virus that causes fatal neuroinflammation in mammals. The insectivorous bat RABV strains are less pathogenic for mice than strains associated with other reservoirs. We characterized the tissue inflammatory response in the CNS of RABV isolated from insectivorous bats. Eptesicus furinalis (EPBRV)-infected mice had a robust inflammatory response and a greater amount of IL-1β, IL-6 and TNF-α, while Myotis nigricans (MNBRV)-infected mice showed a higher expression of IL-17 and greater activation of IFN-β. New approaches to understand the inflammatory response to different mechanisms of action may provide insights for the development of novel therapies for rabies.

4.
Arch Virol ; 164(10): 2469-2477, out. 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1016447

RESUMEN

Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines. (AU)


Asunto(s)
Animales , Virus de la Rabia/patogenicidad , Replicación Viral , Virus de la Rabia/aislamiento & purificación , Quirópteros/virología , Canidae/virología , Animales Salvajes/virología
5.
Arch Virol ; 164(10): 2469-2477, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31297587

RESUMEN

Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines.


Asunto(s)
Canidae/virología , Quirópteros/virología , Virus de la Rabia/aislamiento & purificación , Virus de la Rabia/patogenicidad , Rabia/patología , Rabia/virología , Animales , Línea Celular , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Histocitoquímica , Ratones , Neuronas/virología , Análisis de Supervivencia , Virulencia , Replicación Viral
6.
Arch virol, v. 164, n. 10, p. 2469-2477, oct. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2850

RESUMEN

Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines.

7.
Arch. virol. ; 164(10): 2469–2477, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17226

RESUMEN

Rabies is a lethal viral disease that can affect a wide range of mammals. Currently, Rabies virus (RABV) in some European and American countries is maintained primarily in wild species. The regulation of viral replication is one of the critical mechanisms involved in RABV pathogenesis. However, the relationship between replication and the pathogenesis of RABV isolated from wild animals remains poorly understood. In the present study, we evaluated the pathogenicity of the street viruses Nyctinomops laticaudatus bat-associated RABV (NYBRV) and Cerdocyon thous canid-associated RABV (CECRV). Infection of mice with NYBRV led to 33% mortality with rapid disease evolution and marked histopathological changes in the CNS. In contrast, infection with CECRV led to 67% mortality and caused mild neuropathological lesions. The proportion of RABV antigen was significantly higher in the cytoplasm of neuronal cells of the cerebral cortex and in the meninges of mice infected with CECRV and NYBRV, respectively. Moreover, the replication rate of NYBRV was significantly higher (p < 0.001) than that of CECRV in neuroblastoma cells. However, CECRV replicated to a significantly higher titer in epithelial cells. Our results indicate that NYBRV infection results in rapid disease progression accompanied by frequent and intense histopathological alterations in the CNS in mice, and in a high replication rate in neuroblastoma cells. Although, CECRV is more pathogenic in mice, it caused milder histopathological changes in the CNS and replicated more efficiently in epithelial cells. Our data point to a correlation between clinical aspects of disease and the replication of RABV in different cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...